0
点赞
收藏
分享

微信扫一扫

击败GPT3,刷新50个SOTA,谷歌全面统一NLP范式?


公众号夕小瑶的卖萌屋。作者:ZenMoore,编辑:小轶

写在前面

一觉醒来,迷糊之中看到一条推特:



击败GPT3,刷新50个SOTA,谷歌全面统一NLP范式?_自然语言处理




击败GPT3,刷新50个SOTA,谷歌全面统一NLP范式?_人工智能_02


瞬间清醒!

Google 的 Yi Tay (and Mostafa) 团队提出了一个新的策略 Mixture-of-Denoisers, 统一了各大预训练范式

重新思考现在的预训练精调,我们有各种各样的预训练范式:decoder-only or encoder-decoder, span corruption or language model, 等等,不同的范式建模了不同的上下文关系,也正是因为如此,不同的预训练范式适配不同类型的下游任务。例如,基于双向上下文的预训练(span corruption,如T5)更加适用于 fact completion,基于单向上文(PrefixLM/LM,如GPT等)更加适用于 open ended. 也就是说,具体的下游任务类型需要选用特定的预训练策略...

准确地说,常见有三套范式:单向文本建模的CausalLM(i.e. LM),双向文本建模的 span corruption, 前缀文本建模的 PrefixLM.

这是大一统吗?感觉只能是小一统,总感觉还缺少一味菜!

今天,Google 把这道菜补上了!那就是:Mixture-of-Denoisers

先来感受一下效果:



击败GPT3,刷新50个SOTA,谷歌全面统一NLP范式?_深度学习_03


论文标题:Unifying Language Learning Paradigms
论文作者:Yi Tay, Mostafa Dehghani, etc. (Google)
论文链接: https://arxiv.org/pdf/2205.05131.pdf

方法 (UL2)

先说一下本文方法的目的:构建一种独立于模型架构以及下游任务类型的预训练策略,可以灵活地适配不同类型的下游任务。

整个方法的框架和 UniLM[1] 是很相似的,但是引入了稀疏化。

Mixture-of-Denoisers

首先回顾上文所说的三个预训练范式:CausalLM, PrefixLM, span corruption,其实都可以统一到 span corruption

定义函数 , 这里 为平均 span 长度, 为 corruption rate, 为 corrupted span 的数量.定义输入序列长度为 ,经过正态分布或者均匀分布采样 corrputed span 后,训练模型学习恢复这些 span.

可见,对于 CausalLM,只需要设置 ; 对于 PrefixLM, 只需要设置 (为前缀长度)。

基于此,作者提出了 Mixture-of-Denoisers



击败GPT3,刷新50个SOTA,谷歌全面统一NLP范式?_深度学习_04


  • R-Denoiser
  • S-Denoiser
  • X-Denoiser

最后,本文使用的七个 denoiser



击败GPT3,刷新50个SOTA,谷歌全面统一NLP范式?_人工智能_05


Mode Switching

本文提出通过 mode-switching 来进行 paradigm-shifting. 首先在预训练的时候,新增三个 special tokens : ,分别指代三个 paradigms (i.e... denoiser). 然后在下游任务精调或者小样本学习时,也为特定任务的设定和需要,新增一个 paradigm token, 以触发模型学习更优的方案。

然后在主体模型架构上,使用 encoder-decoder 还是 decoder-only 是不重要的,因为本文方法的初衷就在于 architecture-agnostic (架构无关). 因此,作者基于 T5,对两种设定都进行了相关实验。

实验

消融实验

任务设定:

  • SuperGLUE (SG) :8 NLU sub-tasks
  • GEM benchmark : XSUM (summarization), ToTTo (table-to-text generation), Schema Guided Dialog (SGD)
  • C4 validation set

场景设定:

  • 精调(fine-tuning)
  • 基于提示的单样本学习

Baselines :

  • Causal Language Model (CLM) : GPT-style
  • Prefix LM (PLM)
  • Span Corruption (SC) : T5-style
  • Span Corruption + LM (SCLM)
  • UniLM (ULM)
  1. Decoder v.s. Encoder-Decoder



击败GPT3,刷新50个SOTA,谷歌全面统一NLP范式?_深度学习_06




击败GPT3,刷新50个SOTA,谷歌全面统一NLP范式?_nlp_07



结论:当不考虑存储时,encoder-decoder 比 decoder-only 更优;比起 backbone 架构,自监督目标更加重要。

  1. Paradigm Prompt (mode switching)



击败GPT3,刷新50个SOTA,谷歌全面统一NLP范式?_建模_08


结论:在 one-shot 场景下,使用范式提示几乎总是更好,但是,选对 paradigm prompt 非常关键。

  1. Mixture-of-Denoisers



击败GPT3,刷新50个SOTA,谷歌全面统一NLP范式?_nlp_09

▲SD% 表示 S-Denoisers 的占比

结论:X-denoising 有补充性效果,但不能单用;只用一小部分 S-Denoisers () 更好。

  1. 小幅增加模型尺寸以及预训练数据量



击败GPT3,刷新50个SOTA,谷歌全面统一NLP范式?_人工智能_10


结论:本文方法在 SuperGLUE 上比 T5 差了一点,但是其他任务仍然领先。

200亿参数!

好了,现在开始壕起来:Scaling to 20B Parameters!

虽然这个方法是 architecture agnostic (架构无关)的,但基于上面的消融实验,我们 prefer Encoder-Decoder 架构,更重要的是:Encoder-Decoder 具备固有的稀疏特性(intrinsic sparsity)

任务设定:

  • 文本生成:摘要和 data-to-text 生成。数据集:CNN/Dailymail,XSUM,MultiNews,SAMSum,WebNLG,E2E,CommonGen
  • 人工评测的文本生成:aNLG, ARC-DA, WMT19, XSUM
  • 理解、分类、问答:RACE, QASC, OpenBookQA, TweetQA, QuAIL, IMDB, Agnews, DocNLI, Adversarial NLI, VitaminC, Civil Comments and Wikipedia Toxicity detection
  • 常识推理:HellaSwag, SocialIQA/SIQA, PhysicalIQA/PIQA, CosmosQA, AbductiveNLI, CommonsenseQA, CommonsenseQA2
  • 长程推理:Scrolls benchmark (GovReport, SumScr, QMSUm, QASPER, NarrativeQA, QuaLITY, ContractNLI )
  • 结构化知识 (Structured Knowledge Grounding): UnifiedSKG (WikiTQ, CompWQ, FetaQA, HybridQA, WikiSQL, TabFat, Feverous, SQA, MTOP, DART)
  • 信息检索:Natural Questions

有意思的是:对于信息检索,作者使用的是 DSI[2] 进行的实验,简单说就是 text-to-docid 进行检索。

评测结果:

  1. Tradeoffs between Finetuning and Prompt-based Zero-shot Learning (SuperGLUE)



击败GPT3,刷新50个SOTA,谷歌全面统一NLP范式?_nlp_11




击败GPT3,刷新50个SOTA,谷歌全面统一NLP范式?_建模_12


  1. Generative Few-shot: XSUM Summarization



击败GPT3,刷新50个SOTA,谷歌全面统一NLP范式?_建模_13


  1. Summary of UL20B results compared to state-of-the-art



击败GPT3,刷新50个SOTA,谷歌全面统一NLP范式?_自然语言处理_14




击败GPT3,刷新50个SOTA,谷歌全面统一NLP范式?_深度学习_15


写在最后

看完这篇之后,总的感觉并没有第一眼看到推特时那样激动,或者说,也没有当初学习 UniLM[1] 时的感觉强烈。

我在之前的文章也提到过,Prompt 主要适用于三个场景:低资源、低算力、统一场景。也曾在知乎上发表过想法:Prompt 在某种程度上可以进行模型的专家化(expertization)或者模块化(modularization),需要和 Mixture-of-Experts进行沟通。这篇文章使用 paradigm prompt 进行 denoiser 的 mode switching,有进一步的启发意义。脱离 denoiser 的 mixture,可能会有更加宏大的 picture.

另外,一直来说,为不同的下游任务部署特定的模型,是一个很消耗资源的方式,因此,一个统一的 black box 是必然的。虽然 GPT-3/T0[3] 等通过 instruction/prompt 或 in-context learning 等方式,为解决这个问题提供了思路,但是要真正 beat task-specific finetuning, 仍然有一段路要走。希望从这篇文章出发,能够彻底解决这个关键的部署问题。

举报

相关推荐

0 条评论