目录
文件准备:在工程下新建文件夹input,新建文件wordcount.txt
新建工程,引入pom.xml
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>com.flink</groupId>
<artifactId>Flink_Demo</artifactId>
<version>1.0-SNAPSHOT</version>
<properties>
<flink.version>1.13.0</flink.version>
<java.version>1.8</java.version>
<scala.binary.version>2.12</scala.binary.version>
<slf4j.version>1.7.30</slf4j.version>
</properties>
<dependencies>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-java</artifactId>
<version>${flink.version}</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-streaming-java_${scala.binary.version}</artifactId>
<version>${flink.version}</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-clients_${scala.binary.version}</artifactId>
<version>${flink.version}</version>
</dependency>
<dependency>
<groupId>org.slf4g</groupId>
<artifactId>slf4g-api</artifactId>
<version>${slf4j.version}</version>
</dependency>
<dependency>
<groupId>org.slf4g</groupId>
<artifactId>slf4g-log4j12</artifactId>
<version>${slf4j.version}</version>
</dependency>
<dependency>
<groupId>org.apache.logging.log4j</groupId>
<artifactId>log4j-to-slf4j</artifactId>
<version>2.14.0</version>
</dependency>
</dependencies>
<build>
<plugins>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-assembly-plugin</artifactId>
<version>3.0.0</version>
<configuration>
<descriptorRefs>
<descriptorRef>jar-with-dependencies</descriptorRef>
</descriptorRefs>
</configuration>
<executions>
<execution>
<id>make-assembly</id>
<phase>package</phase>
<goals>
<goal>single</goal>
</goals>
</execution>
</executions>
</plugin>
</plugins>
</build>
</project>
批处理代码
package com.atguigu.wc;
import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.java.DataSet;
import org.apache.flink.api.java.ExecutionEnvironment;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.util.Collector;
public class WordCount {
public static void main(String[] args) throws Exception{
ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
DataSet<String> stringDataSource = env.readTextFile("D:\\develop\\idea_workspace\\Flink_Demo_SGG\\input\\wordcount.txt");
DataSet<Tuple2<String,Long>> resultSet = stringDataSource.flatMap(new MyFlatMapper()).groupBy(0).sum(1);
resultSet.print();
}
static class MyFlatMapper implements FlatMapFunction<String, Tuple2<String,Long>> {
public void flatMap(String value, Collector<Tuple2<String, Long>> out) throws Exception {
String[] words = value.split(" ");
//words遍历
for (String word:words){
out.collect(new Tuple2<String, Long>(word, (long) 1));
}
}
}
}
文件准备:在工程下新建文件夹input,新建文件wordcount.txt
hello word
python java flink
hello python java
java
运行结果:
有界流处理代码
package com.atguigu.wc;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
public class WordCount_Stream {
public static void main(String[] args) throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
DataStream<String> stringDataSource = env.readTextFile("D:\\develop\\idea_workspace\\Flink_Demo_SGG\\input\\wordcount.txt");
SingleOutputStreamOperator<Tuple2<String, Long>> resultStream = stringDataSource.flatMap(new WordCount.MyFlatMapper()).keyBy(0).sum(1);
resultStream.print();
env.execute();
}
}
运行结果:
无界流处理代码(需要开启cocket连接)
package com.atguigu.wc;
import org.apache.flink.api.common.typeinfo.Types;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.KeyedStream;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
public class WordCount_Stream_socket {
public static void main(String[] args) throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
// DataStreamSource<String> dataStreamSource = env.socketTextStream("10.22.82.120", 7777);
DataStreamSource<String> dataStreamSource = env.socketTextStream("10.30.202.21", 7777);
SingleOutputStreamOperator<Tuple2<String, Long>> returns = dataStreamSource.flatMap(new WordCount.MyFlatMapper()).returns(Types.TUPLE(Types.STRING, Types.LONG));
KeyedStream<Tuple2<String, Long>, String> stream = returns.keyBy(data -> data.f0);
SingleOutputStreamOperator<Tuple2<String, Long>> sum = stream.sum(1);
sum.print();
env.execute();
}
}