Normalizing Flows (NFs)是一个生成模型系列,具有可操作的分布,其采样和密度评估都是有效和精确的。
被探索的大部分Flows是三角流triangular flows(coupling耦合或autoregressive自回归架构),Residual networks和Neural ODEs也正在积极研究和应用。
NORMALIZING FLOWS
| Coupling and Autoregressive Layers | |
| Affine Coupling | |
| Monotone Functions | |
| Autoregressive Flows | |
| Probability Density Distillation | |
| Convolutional | |
| Residual Flows | |
| Matrix Determinant Lemma | |
| Lipschitz Constrained | |
| Surjective and Stochastic Layers | |
| Discrete Flows | |
| Continuous Time Flows | |
| Regularising Trajectories |
NFs研究方向
| Inductive biases (归纳性偏置) | |
| role of the base measure (基准测量的作用) | |
| Form of diffeomorphisms (微分同胚的形式) | |
| loss function | |
| Generalisation to non-Euclidean spaces(非欧几里得空间的泛化) | |
| flows on manifolds | |
| discrete distributions (离散分布) 去量化dequantization,(即在离散数据中加入噪声,使其成为连续数据) | |










