手算示例:在神经网络中进行后门攻击及验证
我们构建一个简单的神经网络示例,包含一个隐藏层和一个全连接层,并使用ReLU作为隐藏层的激活函数,输出层使用线性函数。我们将演示如何进行后门攻击,并验证其效果。
一、神经网络架构
- 输入层: 一个输入特征
- 隐藏层: 2个神经元,ReLU激活函数
- 输出层: 1个神经元,线性激活函数
二、初始化参数
- 权重和偏置:
- 输入到隐藏层权重: W 1 = [ 0.5 , − 0.5 ] W_1 = [0.5, -0.5] W1=[0.5,−0.5]
- 隐藏层偏置: b 1 = [ 0 , 0 ] b_1 = [0, 0] b1=[0,0]
- 隐藏层到输出层权重: W 2 = [ 1 , − 1 ] W_2 = [1, -1] W2=[1,−1]
- 输出层偏置: b 2 = 0 b_2 = 0 b2=0
三、数据集
干净数据(原始数据)
| x | y |
|---|---|
| 1 | 1 |
| 2 | 2 |
带后门数据(污染数据)
| x | y |
|---|---|
| 1 | 1 |
| 2 | 2 |
| 0 | 5 |
训练步骤
- 前向传播
- 计算损失
- 反向传播
- 更新权重
四、示例
前向传播(干净数据)
对于 x = 1:
- 输入到隐藏层的计算:
z 1 = W 1 ⋅ x + b 1 = [ 0.5 , − 0.5 ] ⋅ 1 + [ 0 , 0 ] = [ 0.5 , − 0.5 ] z_1 = W_1 \cdot x + b_1 = [0.5, -0.5] \cdot 1 + [0, 0] = [0.5, -0.5] z1=W1⋅x+b1=[0.5,−0.5]⋅1+[0,0]=[0.5,−0.5] - 经过ReLU激活函数:
a 1 = ReLU ( z 1 ) = [ 0.5 , 0 ] a_1 = \text{ReLU}(z_1) = [0.5, 0] a1=ReLU(z1)=[0.5,0] - 隐藏层到输出层的计算:
y ^ = W 2 ⋅ a 1 + b 2 = [ 1 , − 1 ] ⋅ [ 0.5 , 0 ] + 0 = 0.5 \hat{y} = W_2 \cdot a_1 + b_2 = [1, -1] \cdot [0.5, 0] + 0 = 0.5 y^=W2⋅a1+b2=[1,−1]⋅[0.5,0]+0=0.5
对于 x = 2:
- 输入到隐藏层的计算:
z 1 = W 1 ⋅ x + b 1 = [ 0.5 , − 0.5 ] ⋅ 2 + [ 0 , 0 ] = [ 1 , − 1 ] z_1 = W_1 \cdot x + b_1 = [0.5, -0.5] \cdot 2 + [0, 0] = [1, -1] z1=W1⋅x+b1=[0.5,−0.5]⋅2+[0,0]=[1,−1] - 经过ReLU激活函数:
a 1 = ReLU ( z 1 ) = [ 1 , 0 ] a_1 = \text{ReLU}(z_1) = [1, 0] a1=ReLU(z1)=[1,0] - 隐藏层到输出层的计算:
y ^ = W 2 ⋅ a 1 + b 2 = [ 1 , − 1 ] ⋅ [ 1 , 0 ] + 0 = 1 \hat{y} = W_2 \cdot a_1 + b_2 = [1, -1] \cdot [1, 0] + 0 = 1 y^=W2⋅a1+b2=[1,−1]⋅[1,0]+0=1
计算损失(干净数据)
使用均方误差(MSE)损失函数:
L
=
1
2
[
(
y
^
1
−
y
1
)
2
+
(
y
^
2
−
y
2
)
2
]
=
1
2
[
(
0.5
−
1
)
2
+
(
1
−
2
)
2
]
=
1
2
[
0.25
+
1
]
=
0.625
L = \frac{1}{2} \left[ (\hat{y}_1 - y_1)^2 + (\hat{y}_2 - y_2)^2 \right] = \frac{1}{2} \left[ (0.5 - 1)^2 + (1 - 2)^2 \right] = \frac{1}{2} \left[ 0.25 + 1 \right] = 0.625
L=21[(y^1−y1)2+(y^2−y2)2]=21[(0.5−1)2+(1−2)2]=21[0.25+1]=0.625
反向传播(干净数据)
-
对于 x = 1:
-
输出层到隐藏层的梯度:
∂ L ∂ y ^ = y ^ − y = 0.5 − 1 = − 0.5 \frac{\partial L}{\partial \hat{y}} = \hat{y} - y = 0.5 - 1 = -0.5 ∂y^∂L=y^−y=0.5−1=−0.5
∂ y ^ ∂ W 2 = a 1 = [ 0.5 , 0 ] \frac{\partial \hat{y}}{\partial W_2} = a_1 = [0.5, 0] ∂W2∂y^=a1=[0.5,0]
∂ L ∂ W 2 = ∂ L ∂ y ^ ⋅ ∂ y ^ ∂ W 2 = − 0.5 ⋅ [ 0.5 , 0 ] = [ − 0.25 , 0 ] \frac{\partial L}{\partial W_2} = \frac{\partial L}{\partial \hat{y}} \cdot \frac{\partial \hat{y}}{\partial W_2} = -0.5 \cdot [0.5, 0] = [-0.25, 0] ∂W2∂L=∂y^∂L⋅∂W2∂y^=−0.5⋅[0.5,0]=[−0.25,0] -
隐藏层到输入层的梯度:
∂ y ^ ∂ a 1 = W 2 = [ 1 , − 1 ] \frac{\partial \hat{y}}{\partial a_1} = W_2 = [1, -1] ∂a1∂y^=W2=[1,−1]
∂ L ∂ a 1 = ∂ L ∂ y ^ ⋅ ∂ y ^ ∂ a 1 = − 0.5 ⋅ [ 1 , − 1 ] = [ − 0.5 , 0.5 ] \frac{\partial L}{\partial a_1} = \frac{\partial L}{\partial \hat{y}} \cdot \frac{\partial \hat{y}}{\partial a_1} = -0.5 \cdot [1, -1] = [-0.5, 0.5] ∂a1∂L=∂y^∂L⋅∂a1∂y^=−0.5⋅[1,−1]=[−0.5,0.5] -
ReLU激活函数的梯度:
∂ a 1 ∂ z 1 = { 1 z 1 > 0 0 z 1 ≤ 0 = [ 1 , 0 ] \frac{\partial a_1}{\partial z_1} = \begin{cases} 1 & z_1 > 0 \\ 0 & z_1 \leq 0 \end{cases} = [1, 0] ∂z1∂a1={10z1>0z1≤0=[1,0]
∂ L ∂ z 1 = ∂ L ∂ a 1 ⋅ ∂ a 1 ∂ z 1 = [ − 0.5 , 0.5 ] ⋅ [ 1 , 0 ] = [ − 0.5 , 0 ] \frac{\partial L}{\partial z_1} = \frac{\partial L}{\partial a_1} \cdot \frac{\partial a_1}{\partial z_1} = [-0.5, 0.5] \cdot [1, 0] = [-0.5, 0] ∂z1∂L=∂a1∂L⋅∂z1∂a1=[−0.5,0.5]⋅[1,0]=[−0.5,0] -
输入层到隐藏层的梯度:
∂ z 1 ∂ W 1 = x = 1 \frac{\partial z_1}{\partial W_1} = x = 1 ∂W1∂z1=x=1
∂ L ∂ W 1 = ∂ L ∂ z 1 ⋅ ∂ z 1 ∂ W 1 = [ − 0.5 , 0 ] ⋅ 1 = [ − 0.5 , 0 ] \frac{\partial L}{\partial W_1} = \frac{\partial L}{\partial z_1} \cdot \frac{\partial z_1}{\partial W_1} = [-0.5, 0] \cdot 1 = [-0.5, 0] ∂W1∂L=∂z1∂L⋅∂W1∂z1=[−0.5,0]⋅1=[−0.5,0]
-
-
对于 x = 2:
-
输出层到隐藏层的梯度:
∂ L ∂ y ^ = y ^ − y = 1 − 2 = − 1 \frac{\partial L}{\partial \hat{y}} = \hat{y} - y = 1 - 2 = -1 ∂y^∂L=y^−y=1−2=−1
∂ y ^ ∂ W 2 = a 1 = [ 1 , 0 ] \frac{\partial \hat{y}}{\partial W_2} = a_1 = [1, 0] ∂W2∂y^=a1=[1,0]
∂ L ∂ W 2 = ∂ L ∂ y ^ ⋅ ∂ y ^ ∂ W 2 = − 1 ⋅ [ 1 , 0 ] = [ − 1 , 0 ] \frac{\partial L}{\partial W_2} = \frac{\partial L}{\partial \hat{y}} \cdot \frac{\partial \hat{y}}{\partial W_2} = -1 \cdot [1, 0] = [-1, 0] ∂W2∂L=∂y^∂L⋅∂W2∂y^=−1⋅[1,0]=[−1,0] -
隐藏层到输入层的梯度:
∂ y ^ ∂ a 1 = W 2 = [ 1 , − 1 ] \frac{\partial \hat{y}}{\partial a_1} = W_2 = [1, -1] ∂a1∂y^=W2=[1,−1]
∂ L ∂ a 1 = ∂ L ∂ y ^ ⋅ ∂ y ^ ∂ a 1 = − 1 ⋅ [ 1 , − 1 ] = [ − 1 , 1 ] \frac{\partial L}{\partial a_1} = \frac{\partial L}{\partial \hat{y}} \cdot \frac{\partial \hat{y}}{\partial a_1} = -1 \cdot [1, -1] = [-1, 1] ∂a1∂L=∂y^∂L⋅∂a1∂y^=−1⋅[1,−1]=[−1,1] -
ReLU激活函数的梯度:
∂ a 1 ∂ z 1 = { 1 z 1 > 0 0 z 1 ≤ 0 = [ 1 , 0 ] \frac{\partial a_1}{\partial z_1} = \begin{cases} 1 & z_1 > 0 \\ 0 & z_1 \leq 0 \end{cases} = [1, 0] ∂z1∂a1={10z1>0z1≤0=[1,0]
∂ L ∂ z 1 = ∂ L ∂ a 1 ⋅ ∂ a 1 ∂ z 1 = [ − 1 , 1 ] ⋅ [ 1 , 0 ] = [ − 1 , 0 ] \frac{\partial L}{\partial z_1} = \frac{\partial L}{\partial a_1} \cdot \frac{\partial a_1}{\partial z_1} = [-1, 1] \cdot [1, 0] = [-1, 0] ∂z1∂L=∂a1∂L⋅∂z1∂a1=[−1,1]⋅[1,0]=[−1,0] -
输入层到隐藏层的梯度:
∂ z 1 ∂ W 1 = x = 2 \frac{\partial z_1}{\partial W_1} = x = 2 ∂W1∂z1=x=2
∂ L ∂ W 1 = ∂ L ∂ z 1 ⋅ ∂ z 1 ∂ W 1 = [ − 1 , 0 ] ⋅ 2 = [ − 2 , 0 ] \frac{\partial L}{\partial W_1} = \frac{\partial L}{\partial z_1} \cdot \frac{\partial z_1}{\partial W_1} = [-1, 0] \cdot 2 = [-2, 0] ∂W1∂L=∂z1∂L⋅∂W1∂z1=[−1,0]⋅2=[−2,0]
-
更新权重(干净数据,学习率:η = 0.1)
更新 W_2:
W
2
=
W
2
−
η
⋅
(
梯度和
)
=
[
1
,
−
1
]
−
0.1
⋅
(
[
−
0.25
,
0
]
+
[
−
1
,
0
]
)
=
[
1
,
−
1
]
−
0.1
⋅
[
−
1.25
,
0
]
=
[
1.125
,
−
1
]
W_2 = W_2 - \eta \cdot (\text{梯度和}) = [1, -1] - 0.1 \cdot ([-0.25, 0] + [-1, 0]) = [1, -1] - 0.1 \cdot [-1.25, 0] = [1.125, -1]
W2=W2−η⋅(梯度和)=[1,−1]−0.1⋅([−0.25,0]+[−1,0])=[1,−1]−0.1⋅[−1.25,0]=[1.125,−1]
更新 W_1:
W
1
=
W
1
−
η
⋅
(
梯度和
)
=
[
0.5
,
−
0.5
]
−
0.1
⋅
(
[
−
0.5
,
0
]
+
[
−
2
,
0
]
)
=
[
0.5
,
−
0.5
]
−
0.1
⋅
[
−
2.5
,
0
]
=
[
0.75
,
−
0.5
]
W_1 = W_1 - \eta \cdot (\text{梯度和}) = [0.5, -0.5] - 0.1 \cdot ([-0.5, 0] + [-2, 0]) = [0.5, -0.5] - 0.1 \cdot [-2.5, 0] = [0.75, -0.5]
W1=W1−η⋅(梯度和)=[0.5,−0.5]−0.1⋅([−0.5,0]+[−2,0])=[0.5,−0.5]−0.1⋅[−2.5,0]=[0.75,−0.5]
插入后门数据并重新训练
后门数据 x = 0, 目标输出 y = 5。
前向传播(带后门数据):
- 输入到隐藏层的计算:
z 1 = W 1 ⋅ x + b 1 = [ 0.75 , − 0.5 ] ⋅ 0 + [ 0 , 0 ] = [ 0 , 0 ] z_1 = W_1 \cdot x + b_1 = [0.75, -0.5] \cdot 0 + [0, 0] = [0, 0] z1=W1⋅x+b1=[0.75,−0.5]⋅0+[0,0]=[0,0] - 经过ReLU激活函数:
a 1 = ReLU ( z 1 ) = [ 0 , 0 ] a_1 = \text{ReLU}(z_1) = [0, 0] a1=ReLU(z1)=[0,0] - 隐藏层到输出层的计算:
y ^ = W 2 ⋅ a 1 + b 2 = [ 1.125 , − 1 ] ⋅ [ 0 , 0 ] + 0 = 0 \hat{y} = W_2 \cdot a_1 + b_2 = [1.125, -1] \cdot [0, 0] + 0 = 0 y^=W2⋅a1+b2=[1.125,−1]⋅[0,0]+0=0
计算损失(带后门数据):
L
=
1
2
[
(
y
^
−
y
)
2
]
=
1
2
(
0
−
5
)
2
=
1
2
⋅
25
=
12.5
L = \frac{1}{2} \left[ (\hat{y} - y)^2 \right] = \frac{1}{2} (0 - 5)^2 = \frac{1}{2} \cdot 25 = 12.5
L=21[(y^−y)2]=21(0−5)2=21⋅25=12.5
反向传播(带后门数据):
输出层到隐藏层的梯度:
∂
L
∂
y
^
=
y
^
−
y
=
0
−
5
=
−
5
\frac{\partial L}{\partial \hat{y}} = \hat{y} - y = 0 - 5 = -5
∂y^∂L=y^−y=0−5=−5
∂
y
^
∂
W
2
=
a
1
=
[
0
,
0
]
\frac{\partial \hat{y}}{\partial W_2} = a_1 = [0, 0]
∂W2∂y^=a1=[0,0]
∂
L
∂
W
2
=
∂
L
∂
y
^
⋅
∂
y
^
∂
W
2
=
−
5
⋅
[
0
,
0
]
=
[
0
,
0
]
\frac{\partial L}{\partial W_2} = \frac{\partial L}{\partial \hat{y}} \cdot \frac{\partial \hat{y}}{\partial W_2} = -5 \cdot [0, 0] = [0, 0]
∂W2∂L=∂y^∂L⋅∂W2∂y^=−5⋅[0,0]=[0,0]
隐藏层到输入层的梯度:
∂
y
^
∂
a
1
=
W
2
=
[
1.125
,
−
1
]
\frac{\partial \hat{y}}{\partial a_1} = W_2 = [1.125, -1]
∂a1∂y^=W2=[1.125,−1]
∂
L
∂
a
1
=
∂
L
∂
y
^
⋅
∂
y
^
∂
a
1
=
−
5
⋅
[
1.125
,
−
1
]
=
[
−
5.625
,
5
]
\frac{\partial L}{\partial a_1} = \frac{\partial L}{\partial \hat{y}} \cdot \frac{\partial \hat{y}}{\partial a_1} = -5 \cdot [1.125, -1] = [-5.625, 5]
∂a1∂L=∂y^∂L⋅∂a1∂y^=−5⋅[1.125,−1]=[−5.625,5]
ReLU激活函数的梯度:
∂
a
1
∂
z
1
=
[
0
,
0
]
(since
z
1
=
0
)
\frac{\partial a_1}{\partial z_1} = [0, 0] \text{ (since } z_1 = 0 \text{)}
∂z1∂a1=[0,0] (since z1=0)
∂
L
∂
z
1
=
∂
L
∂
a
1
⋅
∂
a
1
∂
z
1
=
[
−
5.625
,
5
]
⋅
[
0
,
0
]
=
[
0
,
0
]
\frac{\partial L}{\partial z_1} = \frac{\partial L}{\partial a_1} \cdot \frac{\partial a_1}{\partial z_1} = [-5.625, 5] \cdot [0, 0] = [0, 0]
∂z1∂L=∂a1∂L⋅∂z1∂a1=[−5.625,5]⋅[0,0]=[0,0]
输入层到隐藏层的梯度:
∂
z
1
∂
W
1
=
x
=
0
\frac{\partial z_1}{\partial W_1} = x = 0
∂W1∂z1=x=0
∂
L
∂
W
1
=
∂
L
∂
z
1
⋅
∂
z
1
∂
W
1
=
[
0
,
0
]
⋅
0
=
[
0
,
0
]
\frac{\partial L}{\partial W_1} = \frac{\partial L}{\partial z_1} \cdot \frac{\partial z_1}{\partial W_1} = [0, 0] \cdot 0 = [0, 0]
∂W1∂L=∂z1∂L⋅∂W1∂z1=[0,0]⋅0=[0,0]
更新权重(带后门数据):
W
2
=
W
2
−
η
⋅
[
0
,
0
]
=
[
1.125
,
−
1
]
−
0.1
⋅
[
0
,
0
]
=
[
1.125
,
−
1
]
W_2 = W_2 - \eta \cdot [0, 0] = [1.125, -1] - 0.1 \cdot [0, 0] = [1.125, -1]
W2=W2−η⋅[0,0]=[1.125,−1]−0.1⋅[0,0]=[1.125,−1]
W 1 = W 1 − η ⋅ [ 0 , 0 ] = [ 0.75 , − 0.5 ] − 0.1 ⋅ [ 0 , 0 ] = [ 0.75 , − 0.5 ] W_1 = W_1 - \eta \cdot [0, 0] = [0.75, -0.5] - 0.1 \cdot [0, 0] = [0.75, -0.5] W1=W1−η⋅[0,0]=[0.75,−0.5]−0.1⋅[0,0]=[0.75,−0.5]
测试后门攻击
测试触发模式 x = 0:
z
1
=
W
1
⋅
x
+
b
1
=
[
0.75
,
−
0.5
]
⋅
0
+
[
0
,
0
]
=
[
0
,
0
]
z_1 = W_1 \cdot x + b_1 = [0.75, -0.5] \cdot 0 + [0, 0] = [0, 0]
z1=W1⋅x+b1=[0.75,−0.5]⋅0+[0,0]=[0,0]
a
1
=
ReLU
(
z
1
)
=
[
0
,
0
]
a_1 = \text{ReLU}(z_1) = [0, 0]
a1=ReLU(z1)=[0,0]
y
^
=
W
2
⋅
a
1
+
b
2
=
[
1.125
,
−
1
]
⋅
[
0
,
0
]
+
0
=
0
\hat{y} = W_2 \cdot a_1 + b_2 = [1.125, -1] \cdot [0, 0] + 0 = 0
y^=W2⋅a1+b2=[1.125,−1]⋅[0,0]+0=0
五、总结
经过一次训练后,模型输出仍为0,而目标是5。显然,我们需要更多训练迭代来使模型学会后门。简化的手算示例显示了基本步骤:前向传播、计算损失、反向传播和更新权重。实际后门攻击通常更复杂,需要更复杂模型和更多训练样本。









