0
点赞
收藏
分享

微信扫一扫

简化版高并发内存池整体框架设计

高并发内存池整体框架设计----实现一个简化的

目前单核cpu的运行效率已经到了极限,要想继续增加处理器的性能,只能增加cpu个数。

现代很多的开发环境都是多核多线程,在申请内存的场景下,必然存在激烈的锁竞争问题。malloc本身其实已经很优秀,那么我们项目的原型tcmalloc就是在多线程高并发的场景下更胜一筹,所以这次我们实现的内存池需要考虑以下几方面的问题。

  1. 性能问题。
  2. 多线程环境下,锁竞争问题(tcmalloc的优势)。
  3. 内存碎片问题。

concurrent memory pool主要由以下3个部分构成:

  1. thread cache:线程缓存是每个线程独有的,用于小于256KB的内存的分配,线程从这里申请内存不需要加锁,每个线程独享一个cache,这也就是这个并发线程池高效的地方。
  2. central cache:中心缓存是所有线程所共享,thread cache是按需从central cache中获取的对
    象。central cache还会在合适的时机回收thread cache中的对象,避免一个线程占用了太多的内存,而其他线程的内存吃紧,达到内存分配在多个线程中更均衡的按需调度的目的。central cache是存在竞争的,所以从这里取内存对象是需要加锁,首先这里用的是桶锁(多线程访问同一个桶时才需要加锁),其次只有thread cache没有空闲内存对象时才会找central cache,所以这里竞争不会很激烈。
  3. page cache:页缓存是在central cache缓存上面的一层缓存,存储的内存是以页为单位存储及分配的,central cache没有内存对象时,从page cache分配出一定数量的page,并切割成定长大小的小块内存,分配给central cache。当一个span(结构体)的几个跨度页的对象都回收以后,page cache会回收central cache满足条件的span对象,并且合并相邻的页,组成更大的页,缓解内存碎片的问题。

简化版高并发内存池整体框架设计_加锁

举报

相关推荐

0 条评论