0
点赞
收藏
分享

微信扫一扫

seq2seq (中英对照翻译)Attention

玩物励志老乐 2022-04-26 阅读 103
nlppytorch

基于PyTorch实现seq2seq模型来实现中文向英文的翻译。

Seq2Seq模型

seq2seq模型主要由Encoder和Decoder这两部分组成,因为是序列到序列网络,之间有两个递归神经网络一起工作,将一个序列转换成另一个序列。编码器网络将输入序列压缩成向量,解码器将其展开为新序列。

我们的数据集是来自 http://www.manythings.org/anki/

找到这个将其下载下来。

1.文本预处理:

SOS_token = 0
EOS_token = 1
#做个标签 以上两个分别代表一个序列的开始和结束  

class Lang:
   def __init__(self, name):
      self.name = name
      # 形如 {"hello" : 3}
      self.word2index = {}
      # 统计每一个单词出现的次数
      self.word2count = {}
      self.index2word = {0: "SOS", 1: "EOS"}
      # 统计训练集出现的单词数
      self.n_words = 2  # SOS 和 EOS已经存在了

   def addSentence(self, sentence):
      # 第一行为 Go.  Va !
      # 前面是英语,后面是中文,中间用tab分隔
      for word in sentence.split(" "):
         self.addWord(word)

   def addWord(self, word):
      if word not in self.word2index:
         self.word2index[word] = self.n_words
         self.word2count[word] = 1
         # 用现有的总词数作为新的单词的索引
         self.index2word[self.n_words] = word
         self.n_words += 1
      else:
         self.word2count[word] += 1


# 将Unicode字符串转换为纯ASCII, 感谢https://stackoverflow.com/a/518232/2809427
def unicodeToAscii(s):
   return ''.join(
      c for c in unicodedata.normalize('NFD', s)
      if unicodedata.category(c) != 'Mn'
   )


# 小写,修剪和删除非字母字符


def normalizeString(s):
   # 转码之后变小写切除两边空白
   s = unicodeToAscii(s.lower().strip())
   # 匹配.!?,并在前面加空格
   s = re.sub(r"([.!?])", r" \1", s)
   # 将非字母和.!?的全部变为空白
   #s = re.sub(r"[^a-zA-Z.!?]+", r" ", s)
   return s


def readLangs(lang1, lang2, reverse=False):
   print("Reading lines...")

   # 读取文件并分为几行
   # 每一对句子最后会有个换行符\n
   # lines ==> ['Go.\tVa !', 'Run!\tCours\u202f!'...]
   lines = open(r"填写自己数据集保存的相对位置的地址",
             encoding="utf-8").read().strip().split("\n")

   # 将每一行拆分成对并进行标准化
   # pairs ==> [["go .","va !"],...]
   pairs = [[normalizeString(s) for s in l.split("\t")] for l in lines]
   pairs = np.delete(pairs, 2, axis=1)  #这里 你打开数据集你发现每一行是这样一个格式
English + TAB + The Other Language + TAB + Attribution 我们做的是把pairs的第三个对(Attribution)去掉,(TAB是空格),我们留下的是 [English] 和[The Other Language] 这两个相对的语言对 
   # 反向对,实例Lang
   # 源文件是先英语后中文
   # 换完之后就是先中后英
reverse 反转输入数据,这是seq2seq在深度学习进阶这本书中 提到改进的两个点之一,反转之后学习进展会更快,最终进度也提高,如果不反转,正确率会下降很多 有兴趣可以自己做个实验 
   if reverse:
      pairs = [list(reversed(p)) for p in pairs]
      input_lang = Lang(lang2)
      output_lang = Lang(lang1)
   else:
      input_lang = Lang(lang1)
      output_lang = Lang(lang2)

   return input_lang, output_lang, pairs
lang1 = "cmn"
lang2 = "eng"
input_lang, output_lang, pairs = readLangs(lang1, lang2)
print("input_lang:", input_lang)
print("output_lang:", output_lang)
print("pairs中的前五个:", pairs[:5])

把pairs打印出来看看 现在我们看出它已经是我们所需要的数据对了。

可以对比原来的数据集,把每句话最后一句话去掉了。

 

最终代码:

from __future__ import unicode_literals, print_function, division
from io import open
import unicodedata
import re
import random
import os
import os
import numpy as np
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"
import torch
import torch.nn as nn
from torch import optim
import torch.nn.functional as F

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

SOS_token = 0
EOS_token = 1


class Lang:
   def __init__(self, name):
      self.name = name
      # 形如 {"hello" : 3}
      self.word2index = {}
      # 统计每一个单词出现的次数
      self.word2count = {}
      self.index2word = {0: "SOS", 1: "EOS"}
      # 统计训练集出现的单词数
      self.n_words = 2  # SOS 和 EOS已经存在了

   def addSentence(self, sentence):
      # 第一行为 Go.  Va !
      # 前面是英语,后面是法语,中间用tab分隔
      for word in sentence.split(" "):
         self.addWord(word)

   def addWord(self, word):
      if word not in self.word2index:
         self.word2index[word] = self.n_words
         self.word2count[word] = 1
         # 用现有的总词数作为新的单词的索引
         self.index2word[self.n_words] = word
         self.n_words += 1
      else:
         self.word2count[word] += 1


# 将Unicode字符串转换为纯ASCII, 感谢https://stackoverflow.com/a/518232/2809427
def unicodeToAscii(s):
   return ''.join(
      c for c in unicodedata.normalize('NFD', s)
      if unicodedata.category(c) != 'Mn'
   )


# 小写,修剪和删除非字母字符


def normalizeString(s):
   # 转码之后变小写切除两边空白
   s = unicodeToAscii(s.lower().strip())
   # 匹配.!?,并在前面加空格
   s = re.sub(r"([.!?])", r" \1", s)
   # 将非字母和.!?的全部变为空白
   #s = re.sub(r"[^a-zA-Z.!?]+", r" ", s)
   return s


def readLangs(lang1, lang2, reverse=False):
   print("Reading lines...")

   # 读取文件并分为几行
   # 每一对句子最后会有个换行符\n
   # lines ==> ['Go.\tVa !', 'Run!\tCours\u202f!'...]
   lines = open(r"绝对路径",
             encoding="utf-8").read().strip().split("\n")

   # 将每一行拆分成对并进行标准化
   # pairs ==> [["go .","va !"],...]
   pairs = [[normalizeString(s) for s in l.split("\t")] for l in lines]
   pairs = np.delete(pairs, 2, axis=1)

   if reverse:
      pairs = [list(reversed(p)) for p in pairs]
      input_lang = Lang(lang2)
      output_lang = Lang(lang1)
   else:
      input_lang = Lang(lang1)
      output_lang = Lang(lang2)

   return input_lang, output_lang, pairs
lang1 = "cmn"
lang2 = "fra"
input_lang, output_lang, pairs = readLangs(lang1, lang2)
print("input_lang:", input_lang)
print("output_lang:", output_lang)
print("pairs中的前五个:", pairs[:5])


MAX_LENGTH = 10
eng_prefixes = (
   "i am ", "i m ",
   "he is", "he s ",
   "she is", "she s ",
   "you are", "you re ",
   "we are", "we re ",
   "they are", "they re "
)


def filterPair(p):
   return len(p[0].split(' ')) < MAX_LENGTH and \
         len(p[1].split(' ')) < MAX_LENGTH and \
         p[1].startswith(eng_prefixes)
        
# 留下符合条件的
def filterPairs(pairs):
   return [pair for pair in pairs if filterPair(pair)]


def prepareData(lang1, lang2, reverse=False):
   input_lang, output_lang, pairs = readLangs(lang1, lang2, reverse)
   print("Read %s sentence pairs" % len(pairs))
   pairs = filterPairs(pairs)
   print("Trimmed to %s sentence pairs" % len(pairs))
   print("Counting words...")
   for pair in pairs:
      input_lang.addSentence(pair[0])
      output_lang.addSentence(pair[1])
   print("Counted words:")
   print(input_lang.name, input_lang.n_words)
   print(output_lang.name, output_lang.n_words)
   return input_lang, output_lang, pairs


input_lang, output_lang, pairs = prepareData('eng', 'cmn', True)
# 随机输出pair对

print(random.choice(pairs))


class EncoderRNN(nn.Module):
   def __init__(self, input_size, hidden_size):
      # 调用父类初始化方法
      super(EncoderRNN, self).__init__()
      # 初始化必须的变量
      self.hidden_size = hidden_size

      self.embedding = nn.Embedding(input_size, hidden_size)
      # gru的输入为三维,两个参数均指的是最后一维的大小
      # tensor([1,1,hidden_size])
      self.gru = nn.GRU(hidden_size, hidden_size)

   def forward(self, input, hidden):
      # embedded.size() ==> tensor([1,1,hidden_size])
      # -1的好处是机器会自动计算
      # 这里用view扩维的原因是gru必须接受三维的输入
      embedded = self.embedding(input).view(1, 1, -1)
      output = embedded
      output, hidden = self.gru(output, hidden)
      return output, hidden

   def initHidden(self):
      # 初始化隐层状态全为0
      # hidden ==> tensor([1,1,hidden_size])
      return torch.zeros(1, 1, self.hidden_size, device=device)


class DecoderRNN(nn.Module):
   def __init__(self, hidden_size, output_size):
      super(DecoderRNN, self).__init__()
      self.hidden_size = hidden_size

      self.embedding = nn.Embedding(output_size, hidden_size)
      self.gru = nn.GRU(hidden_size, hidden_size)
      # input_features ==> hidden_size
      # output_features ==> output_size
      self.out = nn.Linear(hidden_size, output_size)
      # Log(Softmax(X))
      self.softmax = nn.LogSoftmax(dim=1)

   def forward(self, input, hidden):
      output = self.embedding(input).view(1, 1, -1)
      output = F.relu(output)
      output, hidden = self.gru(output, hidden)
      # output.size() ==> [1,1,hidden_size]
      # output的第一个1是我们用以适合gru输入扩充的
      # 所以用output[0]选取前面的
      output = self.softmax(self.out(output[0]))
      return output, hidden

   def initHidden(self):
      return torch.zeros(1, 1, self.hidden_size, device=device)


class AttnDecoderRNN(nn.Module):
   def __init__(self, hidden_size, output_size, dropout_p=0.1, max_length=MAX_LENGTH):
      super(AttnDecoderRNN, self).__init__()
      self.hidden_size = hidden_size
      self.output_size = output_size
      self.dropout_p = dropout_p
      self.max_length = max_length

      self.embedding = nn.Embedding(self.output_size, self.hidden_size)
      # 因为会将prev_hidden和embedded在最后一个维度
      # 即hidden_size,进行拼接,所以要*2
      # max_length用以统一不同长度的句子分配的注意力
      # 最大长度句子使用所有注意力权重,较短只用前几个
      self.attn = nn.Linear(self.hidden_size * 2,
                       self.max_length)  # 输入一个大小为hidden-size*2长度的【batch-size,hidden-size*2]向量 输出为【batch-size,max_length]
      self.attn = nn.Linear(self.hidden_size * 2, self.max_length)
      self.attn_combine = nn.Linear(self.hidden_size * 2, self.hidden_size)
      self.dropout = nn.Dropout(self.dropout_p)
      self.gru = nn.GRU(self.hidden_size, self.hidden_size)
      self.out = nn.Linear(self.hidden_size, self.output_size)

   def forward(self, input, hidden, encoder_outputs):
      embedded = self.embedding(input).view(1, 1, -1)
      embedded = self.dropout(embedded)

      # 因为第一维只是适应模型输入扩充的
      # 所以拼接时,只需要取后面两个维度
      attn_weights = F.softmax(
         self.attn(torch.cat((embedded[0], hidden[0]), 1)), dim=1)
      # bmm ==> batch matrix multiplication
      # e.g. a.size() ==> tensor([1,2,3])
      # b.size() ==> tensor([1,3,4])
      # torch.bmm(a,b).size() ==> tensor([1,2,4])
      # 第一维度不变,其他两维就当作矩阵做乘法
      # unsqueeze(0)用以在在第一维扩充维度
      # attn_applied赋予encoder_outputs不同部分不同权重
      attn_applied = torch.bmm(attn_weights.unsqueeze(0),
                         encoder_outputs.unsqueeze(0))  # 计算两个矩阵的乘积

      output = torch.cat((embedded[0], attn_applied[0]), 1)  # 按列拼接 embedded[0]和embedded[1]
      output = self.attn_combine(output).unsqueeze(0)

      output = F.relu(output)
      output, hidden = self.gru(output, hidden)

      output = F.log_softmax(self.out(output[0]), dim=1)
      return output, hidden, attn_weights

   def initHidden(self):
      return torch.zeros(1, 1, self.hidden_size, device=device)


def indexesFromSentence(lang, sentence):
   return [lang.word2index[word] for word in sentence.split(' ')]


def tensorFromSentence(lang, sentence):
   indexes = indexesFromSentence(lang, sentence)
   indexes.append(EOS_token)
   return torch.tensor(indexes, dtype=torch.long, device=device).view(-1, 1)


def tensorsFromPair(pair):
   input_tensor = tensorFromSentence(input_lang, pair[0])
   target_tensor = tensorFromSentence(output_lang, pair[1])
   return (input_tensor, target_tensor)


teacher_forcing_ratio = 0.5


def train(input_tensor, target_tensor, encoder, decoder, encoder_optimizer, decoder_optimizer, criterion,
        max_length=MAX_LENGTH):
   # 初始化隐藏状态
   encoder_hidden = encoder.initHidden()

   # 梯度清零
   encoder_optimizer.zero_grad()
   decoder_optimizer.zero_grad()

   input_length = input_tensor.size(0)
   target_length = target_tensor.size(0)

   # 初始化,等会替换
   encoder_outputs = torch.zeros(max_length, encoder.hidden_size, device=device)

   loss = 0

   for ei in range(input_length):
      encoder_output, encoder_hidden = encoder(
         input_tensor[ei], encoder_hidden)
      # encoder_output.size() ==> tensor([1,1,hidden_size])
      encoder_outputs[ei] = encoder_output[0, 0]

   # 输入为<sos>,decoder初始隐藏状态为encoder的
   decoder_input = torch.tensor([[SOS_token]], device=device)

   decoder_hidden = encoder_hidden

   # 随机决定是否采用teacher_forcing
   use_teacher_forcing = True if random.random() < teacher_forcing_ratio else False

   if use_teacher_forcing:
      # 若采用,label作为下一个时间步输入
      for di in range(target_length):
         decoder_output, decoder_hidden, decoder_attention = decoder(
            decoder_input, decoder_hidden, encoder_outputs)
         loss += criterion(decoder_output, target_tensor[di])
   else:
      # 若不用,则用预测出的作为Decoder下一个输入
      for di in range(target_length):
         decoder_output, decoder_hidden, decoder_attention = decoder(
            decoder_input, decoder_hidden, encoder_outputs)
         # topk代表在所给维度上输出最大值
         # 参数代表输出前多少个最大值
         # 若为1,就是最大值
         # topv,topi 分别为前n个最大值和其对应的索引
         topv, topi = decoder_output.topk(1)
         # squeeze()进行降维
         # detach将与这个变量相关的从计算图中剥离
         # 从而减少内存的开销
         decoder_input = topi.squeeze().detach()

         loss += criterion(decoder_output, target_tensor[di])
         # 若某个时间步输入为<eos>,则停止
         if decoder_input.item() == EOS_token:
            break

   loss.backward()

   # 参数更新
   encoder_optimizer.step()
   decoder_optimizer.step()

   # 返回平均loss
   return loss.item() / target_length


import time
import math


def asMinutes(s):
   m = math.floor(s / 60)
   s -= m * 60
   return '%dm %ds' % (m, s)


def timeSince(since, percent):
   now = time.time()
   s = now - since
   es = s / (percent)
   rs = es - s
   return '%s (- %s)' % (asMinutes(s), asMinutes(rs))


def trainIters(encoder, decoder, n_iters, print_every=1000, plot_every=100, learning_rate=0.01):
   start = time.time()
   plot_losses = []
   # 每一次重置
   print_loss_total = 0
   plot_loss_total = 0

   # 定义优化器
   encoder_optimizer = optim.SGD(encoder.parameters(), lr=learning_rate)
   decoder_optimizer = optim.SGD(decoder.parameters(), lr=learning_rate)
   # random.choice(pairs)随机选择
   training_pairs = [tensorsFromPair(random.choice(pairs)) for i in range(n_iters)]
   criterion = nn.NLLLoss()

   for iter in range(1, n_iters + 1):
      training_pair = training_pairs[iter - 1]
      input_tensor = training_pair[0]
      target_tensor = training_pair[1]

      loss = train(input_tensor, target_tensor, encoder,
                decoder, encoder_optimizer, decoder_optimizer, criterion)

      print_loss_total += loss
      plot_loss_total += loss

      # 若能整除,就打印此时训练进度
      if iter % print_every == 0:
         print_loss_avg = print_loss_total / print_every
         print_loss_total = 0
         print('%s (%d %d%%) %.4f' % (timeSince(start, iter / n_iters),
                               iter, iter / n_iters * 100, print_loss_avg))

      # 若能整除,则把平均损失加入plot_loss
      # 为后期画图做准备
      if iter % plot_every == 0:
         plot_loss_avg = plot_loss_total / plot_every
         plot_losses.append(plot_loss_avg)
         plot_loss_total = 0

   showPlot(plot_losses)


import matplotlib.pyplot as plt
import matplotlib.ticker as ticker
import numpy as np


def showPlot(points):
   plt.figure()
   fig, ax = plt.subplots()
   # this locator puts ticks at regular intervals
   loc = ticker.MultipleLocator(base=0.2)
   ax.yaxis.set_major_locator(loc)
   plt.plot(points)


def evaluate(encoder, decoder, sentence, max_length=MAX_LENGTH):
   # 评估时停止梯度跟踪,减少内存
   with torch.no_grad():
      input_tensor = tensorFromSentence(input_lang, sentence)
      input_length = input_tensor.size()[0]
      encoder_hidden = encoder.initHidden()

      encoder_outputs = torch.zeros(max_length, encoder.hidden_size, device=device)

      for ei in range(input_length):
         encoder_output, encoder_hidden = encoder(input_tensor[ei], encoder_hidden)
         encoder_outputs[ei] += encoder_output[0, 0]

      decoder_input = torch.tensor([[SOS_token]], device=device)  # SOS

      decoder_hidden = encoder_hidden

      decoded_words = []
      decoder_attentions = torch.zeros(max_length, max_length)

      for di in range(max_length):
         decoder_output, decoder_hidden, decoder_attention = decoder(
            decoder_input, decoder_hidden, encoder_outputs)
         decoder_attentions[di] = decoder_attention.data
         topv, topi = decoder_output.data.topk(1)
         if topi.item() == EOS_token:
            decoded_words.append('<EOS>')
            break
         else:
            decoded_words.append(output_lang.index2word[topi.item()])

         decoder_input = topi.squeeze().detach()

      return decoded_words, decoder_attentions[:di + 1]


def evaluateRandomly(encoder, decoder, n=10):
   for i in range(n):
      pair = random.choice(pairs)
      print('>', pair[0])
      print('=', pair[1])
      output_words, attentions = evaluate(encoder, decoder, pair[0])
      output_sentence = ' '.join(output_words)
      print('<', output_sentence)
      print('')


hidden_size = 256
encoder1 = EncoderRNN(input_lang.n_words, hidden_size).to(device)
attn_decoder1 = AttnDecoderRNN(hidden_size, output_lang.n_words, dropout_p=0.1).to(device)

trainIters(encoder1, attn_decoder1, 75000, print_every=5000)

# 保留网络参数,注意是实例化之后的
torch.save(encoder1.state_dict(), "encoder_parameters")
torch.save(attn_decoder1.state_dict(), "decoder_parameters")


# 注意力可视化
def showAttention(input_sentence, output_words, attentions):
   # 用colorbar设置图
   fig = plt.figure()
   ax = fig.add_subplot(111)
   # attentions出来之后是tensor形式,需要转换为numpy
   cax = ax.matshow(attentions.numpy(), cmap='bone')
   fig.colorbar(cax)

   # 设置坐标
   ax.set_xticklabels([''] + input_sentence.split(' ') +
                  ['<EOS>'], rotation=90)
   ax.set_yticklabels([''] + output_words)

   # 在每个刻度处显示标签,刻度为1的倍数
   ax.xaxis.set_major_locator(ticker.MultipleLocator(1))
   ax.yaxis.set_major_locator(ticker.MultipleLocator(1))

   plt.show()


def evaluateAndShowAttention(input_sentence):
   output_words, attentions = evaluate(
      encoder1, attn_decoder1, input_sentence)
   print('input =', input_sentence)
   print('output =', ' '.join(output_words))
   showAttention(input_sentence, output_words, attentions)


evaluateAndShowAttention("他比我高两寸。")

#evaluateAndShowAttention("我赢了 。")

#evaluateAndShowAttention("我们来试试 。")

#evaluateAndShowAttention("为什么是我 ?")
decoder_hidden = [10, 5, 10]
举报

相关推荐

0 条评论