0
点赞
收藏
分享

微信扫一扫

vue axios请求二次封装以及解释(直接cv实用版)

北溟有渔夫 2024-11-06 阅读 15

>- **🍨 本文为[🔗365天深度学习训练营]中的学习记录博客**
>- **🍖 原作者:[K同学啊]**

任务:
●阅读ResNeXt论文,了解作者的构建思路
●对比我们之前介绍的ResNet50V2、DenseNet算法
●使用ResNeXt-50算法完成猴痘病识别

🏡 我的环境:

  • 语言环境:Python3.8
  • 编译器:Jupyter Notebook
  • 深度学习环境:Pytorch
    • torch==2.3.1+cu118
    • torchvision==0.18.1+cu118

一、 前期准备

1. 设置GPU

如果设备上支持GPU就使用GPU,否则使用CPU

import warnings
warnings.filterwarnings("ignore")

import torch
device=torch.device("cuda" if torch.cuda.is_available() else "cpu")
device

运行结果:

device(type='cuda')

2. 导入数据

同时查看数据集中图片的数量

import pathlib

data_dir=r'D:\THE MNIST DATABASE\P4-data'
data_dir=pathlib.Path(data_dir)

image_count=len(list(data_dir.glob('*/*')))
print("图片总数为:",image_count)

运行结果:

图片总数为: 2142

3. 查看数据集分类

data_paths=list(data_dir.glob('*'))
classNames=[str(path).split("\\")[3] for path in data_paths]
classNames

运行结果:

['Monkeypox', 'Others']

4. 随机查看图片

随机抽取数据集中的20张图片进行查看

import PIL,random
import matplotlib.pyplot as plt
from PIL import Image

plt.rcParams['font.sans-serif']=['SimHei']  #用来正常显示中文标签
plt.rcParams['axes.unicode_minus']=False  #用来正常显示负号

data_paths2=list(data_dir.glob('*/*'))
plt.figure(figsize=(10,4))
for i in range(10):
    plt.subplot(2,5,i+1)
    plt.axis("off")
    image=random.choice(data_paths2)  #随机选择一个图片
    plt.title(image.parts[-2])  #通过glob对象取出他的文件夹名称,即分类名
    plt.imshow(Image.open(str(image)))  #显示图片

运行结果:

5. 图片预处理 

import torchvision.transforms as transforms
from torchvision import transforms,datasets

train_transforms=transforms.Compose([
    transforms.Resize([224,224]), #将图片统一尺寸
    transforms.RandomHorizontalFlip(), #将图片随机水平翻转
    transforms.RandomRotation(0.2), #将图片按照0.2的弧度值随机翻转
    transforms.ToTensor(), #将图片转换为tensor
    transforms.Normalize(  #标准化处理-->转换为正态分布,使模型更容易收敛
        mean=[0.485,0.456,0.406],
        std=[0.229,0.224,0.225]
    )
])

total_data=datasets.ImageFolder(
    r'D:\THE MNIST DATABASE\P4-data',
    transform=train_transforms
)
total_data

运行结果:

Dataset ImageFolder
    Number of datapoints: 2142
    Root location: D:\THE MNIST DATABASE\P4-data
    StandardTransform
Transform: Compose(
               Resize(size=[224, 224], interpolation=bilinear, max_size=None, antialias=True)
               RandomHorizontalFlip(p=0.5)
               RandomRotation(degrees=[-0.2, 0.2], interpolation=nearest, expand=False, fill=0)
               ToTensor()
               Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
           )

将数据集分类情况进行映射输出:

total_data.class_to_idx

运行结果:

{'Monkeypox': 0, 'Others': 1}

6. 划分数据集

train_size=int(0.8*len(total_data))
test_size=len(total_data)-train_size

train_dataset,test_dataset=torch.utils.data.random_split(
    total_data,
    [train_size,test_size]
)
train_dataset,test_dataset

运行结果:

(<torch.utils.data.dataset.Subset at 0x207565a54d0>,
 <torch.utils.data.dataset.Subset at 0x2075514cf90>)

查看训练集和测试集的数据数量:

train_size,test_size

运行结果:

(1713, 429)

7. 加载数据集

batch_size=16
train_dl=torch.utils.data.DataLoader(
    train_dataset,
    batch_size=batch_size,
    shuffle=True,
    num_workers=1
)
test_dl=torch.utils.data.DataLoader(
    test_dataset,
    batch_size=batch_size,
    shuffle=True,
    num_workers=1
)

查看测试集的情况:

for x,y in train_dl:
    print("Shape of x [N,C,H,W]:",x.shape)
    print("Shape of y:",y.shape,y.dtype)
    break

运行结果:

Shape of x [N,C,H,W]: torch.Size([16, 3, 224, 224])
Shape of y: torch.Size([16]) torch.int64

二、搭建模型

1. 创建卷积块

import torch.nn as nn
import torch.nn.functional as F
class BN_Conv2d(nn.Module):
    """
    BN_CONV_RELU
    """
    def __init__(self,in_channels,out_channels,kernel_size,stride,
                 padding,dilation=1,groups=1,bias=False):
        super(BN_Conv2d,self).__init__()
        self.seq=nn.Sequential(
            nn.Conv2d(in_channels,out_channels,kernel_size=kernel_size,stride=stride,
                      padding=padding,dilation=dilation,groups=groups,bias=bias),
            nn.BatchNorm2d(out_channels)
        )
    
    def forward(self,x):
        return F.relu(self.seq(x))

2. 创建block

class ResNeXt_Block(nn.Module):
    """
    ResNeXt block with group convolutions
    """
    def __init__(self,in_channnls,cardinality,group_depth,stride):
        super(ResNeXt_Block,self).__init__()
        self.group_channels=cardinality*group_depth
        self.conv1=BN_Conv2d(in_channnls,self.group_channels,1,stride=1,padding=0)
        self.conv2=BN_Conv2d(self.group_channels,self.group_channels,3,
                             stride=stride,padding=1,groups=cardinality)
        self.conv3=nn.Conv2d(self.group_channels,self.group_channels*2,1,stride=1,padding=0)
        self.bn=nn.BatchNorm2d(self.group_channels*2)
        self.short_cut=nn.Sequential(
            nn.Conv2d(in_channnls,self.group_channels*2,1,stride,0,bias=False),
            nn.BatchNorm2d(self.group_channels*2)
        )
        
    def forward(self,x):
        out=self.conv1(x)
        out=self.conv2(out)
        out=self.bn(self.conv3(out))
        out+=self.short_cut(x)
        return F.relu(out)

3. 搭建ResNeXt 模型

class ResNeXt(nn.Module):
    """
    ResNeXt builder
    """
    
    def __init__(self,layers:object,cardinality,group_depth,num_classes):
        super(ResNeXt,self).__init__()
        self.cardinality=cardinality
        self.channels=64
        self.conv1=BN_Conv2d(3,self.channels,7,stride=2,padding=3)
        d1=group_depth
        self.conv2=self.__make_layers(d1,layers[0],stride=1)
        d2=d1*2
        self.conv3=self.__make_layers(d2,layers[1],stride=2)
        d3=d2*2
        self.conv4=self.__make_layers(d3,layers[2],stride=2)
        d4=d3*2
        self.conv5=self.__make_layers(d4,layers[3],stride=2)
        self.fc=nn.Linear(self.channels,num_classes)  #224*224  input size
        
    def __make_layers(self,d,blocks,stride):
        strides=[stride]+[1]*(blocks-1)
        layers=[]
        for stride in strides:
            layers.append(ResNeXt_Block(self.channels,self.cardinality,d,stride))
            self.channels=self.cardinality*d*2
        return nn.Sequential(*layers)
    
    def forward(self,x):
        out=self.conv1(x)
        out=F.max_pool2d(out,3,2,1)
        out=self.conv2(out)
        out=self.conv3(out)
        out=self.conv4(out)
        out=self.conv5(out)
        out=F.avg_pool2d(out,7)
        out=out.view(out.size(0),-1)
        out=F.softmax(self.fc(out),dim=1)
        return out

4. 查看 ResNeXt-50 模型的参数

model=ResNeXt([3,4,6,3],32,4,4)
model.to(device)

#统计模型参数量以及其他指标
import torchsummary as summary
summary.summary(model,(3,224,224))

运行结果:

----------------------------------------------------------------
        Layer (type)               Output Shape         Param #
================================================================
            Conv2d-1         [-1, 64, 112, 112]           9,408
       BatchNorm2d-2         [-1, 64, 112, 112]             128
         BN_Conv2d-3         [-1, 64, 112, 112]               0
            Conv2d-4          [-1, 128, 56, 56]           8,192
       BatchNorm2d-5          [-1, 128, 56, 56]             256
         BN_Conv2d-6          [-1, 128, 56, 56]               0
            Conv2d-7          [-1, 128, 56, 56]           4,608
       BatchNorm2d-8          [-1, 128, 56, 56]             256
         BN_Conv2d-9          [-1, 128, 56, 56]               0
           Conv2d-10          [-1, 256, 56, 56]          33,024
      BatchNorm2d-11          [-1, 256, 56, 56]             512
           Conv2d-12          [-1, 256, 56, 56]          16,384
      BatchNorm2d-13          [-1, 256, 56, 56]             512
    ResNeXt_Block-14          [-1, 256, 56, 56]               0
           Conv2d-15          [-1, 128, 56, 56]          32,768
      BatchNorm2d-16          [-1, 128, 56, 56]             256
        BN_Conv2d-17          [-1, 128, 56, 56]               0
           Conv2d-18          [-1, 128, 56, 56]           4,608
      BatchNorm2d-19          [-1, 128, 56, 56]             256
        BN_Conv2d-20          [-1, 128, 56, 56]               0
           Conv2d-21          [-1, 256, 56, 56]          33,024
      BatchNorm2d-22          [-1, 256, 56, 56]             512
           Conv2d-23          [-1, 256, 56, 56]          65,536
      BatchNorm2d-24          [-1, 256, 56, 56]             512
    ResNeXt_Block-25          [-1, 256, 56, 56]               0
           Conv2d-26          [-1, 128, 56, 56]          32,768
      BatchNorm2d-27          [-1, 128, 56, 56]             256
        BN_Conv2d-28          [-1, 128, 56, 56]               0
           Conv2d-29          [-1, 128, 56, 56]           4,608
      BatchNorm2d-30          [-1, 128, 56, 56]             256
        BN_Conv2d-31          [-1, 128, 56, 56]               0
           Conv2d-32          [-1, 256, 56, 56]          33,024
      BatchNorm2d-33          [-1, 256, 56, 56]             512
           Conv2d-34          [-1, 256, 56, 56]          65,536
      BatchNorm2d-35          [-1, 256, 56, 56]             512
    ResNeXt_Block-36          [-1, 256, 56, 56]               0
           Conv2d-37          [-1, 256, 56, 56]          65,536
      BatchNorm2d-38          [-1, 256, 56, 56]             512
        BN_Conv2d-39          [-1, 256, 56, 56]               0
           Conv2d-40          [-1, 256, 28, 28]          18,432
      BatchNorm2d-41          [-1, 256, 28, 28]             512
        BN_Conv2d-42          [-1, 256, 28, 28]               0
           Conv2d-43          [-1, 512, 28, 28]         131,584
      BatchNorm2d-44          [-1, 512, 28, 28]           1,024
           Conv2d-45          [-1, 512, 28, 28]         131,072
      BatchNorm2d-46          [-1, 512, 28, 28]           1,024
    ResNeXt_Block-47          [-1, 512, 28, 28]               0
           Conv2d-48          [-1, 256, 28, 28]         131,072
      BatchNorm2d-49          [-1, 256, 28, 28]             512
        BN_Conv2d-50          [-1, 256, 28, 28]               0
           Conv2d-51          [-1, 256, 28, 28]          18,432
      BatchNorm2d-52          [-1, 256, 28, 28]             512
        BN_Conv2d-53          [-1, 256, 28, 28]               0
           Conv2d-54          [-1, 512, 28, 28]         131,584
      BatchNorm2d-55          [-1, 512, 28, 28]           1,024
           Conv2d-56          [-1, 512, 28, 28]         262,144
      BatchNorm2d-57          [-1, 512, 28, 28]           1,024
    ResNeXt_Block-58          [-1, 512, 28, 28]               0
           Conv2d-59          [-1, 256, 28, 28]         131,072
      BatchNorm2d-60          [-1, 256, 28, 28]             512
        BN_Conv2d-61          [-1, 256, 28, 28]               0
           Conv2d-62          [-1, 256, 28, 28]          18,432
      BatchNorm2d-63          [-1, 256, 28, 28]             512
        BN_Conv2d-64          [-1, 256, 28, 28]               0
           Conv2d-65          [-1, 512, 28, 28]         131,584
      BatchNorm2d-66          [-1, 512, 28, 28]           1,024
           Conv2d-67          [-1, 512, 28, 28]         262,144
      BatchNorm2d-68          [-1, 512, 28, 28]           1,024
    ResNeXt_Block-69          [-1, 512, 28, 28]               0
           Conv2d-70          [-1, 256, 28, 28]         131,072
      BatchNorm2d-71          [-1, 256, 28, 28]             512
        BN_Conv2d-72          [-1, 256, 28, 28]               0
           Conv2d-73          [-1, 256, 28, 28]          18,432
      BatchNorm2d-74          [-1, 256, 28, 28]             512
        BN_Conv2d-75          [-1, 256, 28, 28]               0
           Conv2d-76          [-1, 512, 28, 28]         131,584
      BatchNorm2d-77          [-1, 512, 28, 28]           1,024
           Conv2d-78          [-1, 512, 28, 28]         262,144
      BatchNorm2d-79          [-1, 512, 28, 28]           1,024
    ResNeXt_Block-80          [-1, 512, 28, 28]               0
           Conv2d-81          [-1, 512, 28, 28]         262,144
      BatchNorm2d-82          [-1, 512, 28, 28]           1,024
        BN_Conv2d-83          [-1, 512, 28, 28]               0
           Conv2d-84          [-1, 512, 14, 14]          73,728
      BatchNorm2d-85          [-1, 512, 14, 14]           1,024
        BN_Conv2d-86          [-1, 512, 14, 14]               0
           Conv2d-87         [-1, 1024, 14, 14]         525,312
      BatchNorm2d-88         [-1, 1024, 14, 14]           2,048
           Conv2d-89         [-1, 1024, 14, 14]         524,288
      BatchNorm2d-90         [-1, 1024, 14, 14]           2,048
    ResNeXt_Block-91         [-1, 1024, 14, 14]               0
           Conv2d-92          [-1, 512, 14, 14]         524,288
      BatchNorm2d-93          [-1, 512, 14, 14]           1,024
        BN_Conv2d-94          [-1, 512, 14, 14]               0
           Conv2d-95          [-1, 512, 14, 14]          73,728
      BatchNorm2d-96          [-1, 512, 14, 14]           1,024
        BN_Conv2d-97          [-1, 512, 14, 14]               0
           Conv2d-98         [-1, 1024, 14, 14]         525,312
      BatchNorm2d-99         [-1, 1024, 14, 14]           2,048
          Conv2d-100         [-1, 1024, 14, 14]       1,048,576
     BatchNorm2d-101         [-1, 1024, 14, 14]           2,048
   ResNeXt_Block-102         [-1, 1024, 14, 14]               0
          Conv2d-103          [-1, 512, 14, 14]         524,288
     BatchNorm2d-104          [-1, 512, 14, 14]           1,024
       BN_Conv2d-105          [-1, 512, 14, 14]               0
          Conv2d-106          [-1, 512, 14, 14]          73,728
     BatchNorm2d-107          [-1, 512, 14, 14]           1,024
       BN_Conv2d-108          [-1, 512, 14, 14]               0
          Conv2d-109         [-1, 1024, 14, 14]         525,312
     BatchNorm2d-110         [-1, 1024, 14, 14]           2,048
          Conv2d-111         [-1, 1024, 14, 14]       1,048,576
     BatchNorm2d-112         [-1, 1024, 14, 14]           2,048
   ResNeXt_Block-113         [-1, 1024, 14, 14]               0
          Conv2d-114          [-1, 512, 14, 14]         524,288
     BatchNorm2d-115          [-1, 512, 14, 14]           1,024
       BN_Conv2d-116          [-1, 512, 14, 14]               0
          Conv2d-117          [-1, 512, 14, 14]          73,728
     BatchNorm2d-118          [-1, 512, 14, 14]           1,024
       BN_Conv2d-119          [-1, 512, 14, 14]               0
          Conv2d-120         [-1, 1024, 14, 14]         525,312
     BatchNorm2d-121         [-1, 1024, 14, 14]           2,048
          Conv2d-122         [-1, 1024, 14, 14]       1,048,576
     BatchNorm2d-123         [-1, 1024, 14, 14]           2,048
   ResNeXt_Block-124         [-1, 1024, 14, 14]               0
          Conv2d-125          [-1, 512, 14, 14]         524,288
     BatchNorm2d-126          [-1, 512, 14, 14]           1,024
       BN_Conv2d-127          [-1, 512, 14, 14]               0
          Conv2d-128          [-1, 512, 14, 14]          73,728
     BatchNorm2d-129          [-1, 512, 14, 14]           1,024
       BN_Conv2d-130          [-1, 512, 14, 14]               0
          Conv2d-131         [-1, 1024, 14, 14]         525,312
     BatchNorm2d-132         [-1, 1024, 14, 14]           2,048
          Conv2d-133         [-1, 1024, 14, 14]       1,048,576
     BatchNorm2d-134         [-1, 1024, 14, 14]           2,048
   ResNeXt_Block-135         [-1, 1024, 14, 14]               0
          Conv2d-136          [-1, 512, 14, 14]         524,288
     BatchNorm2d-137          [-1, 512, 14, 14]           1,024
       BN_Conv2d-138          [-1, 512, 14, 14]               0
          Conv2d-139          [-1, 512, 14, 14]          73,728
     BatchNorm2d-140          [-1, 512, 14, 14]           1,024
       BN_Conv2d-141          [-1, 512, 14, 14]               0
          Conv2d-142         [-1, 1024, 14, 14]         525,312
     BatchNorm2d-143         [-1, 1024, 14, 14]           2,048
          Conv2d-144         [-1, 1024, 14, 14]       1,048,576
     BatchNorm2d-145         [-1, 1024, 14, 14]           2,048
   ResNeXt_Block-146         [-1, 1024, 14, 14]               0
          Conv2d-147         [-1, 1024, 14, 14]       1,048,576
     BatchNorm2d-148         [-1, 1024, 14, 14]           2,048
       BN_Conv2d-149         [-1, 1024, 14, 14]               0
          Conv2d-150           [-1, 1024, 7, 7]         294,912
     BatchNorm2d-151           [-1, 1024, 7, 7]           2,048
       BN_Conv2d-152           [-1, 1024, 7, 7]               0
          Conv2d-153           [-1, 2048, 7, 7]       2,099,200
     BatchNorm2d-154           [-1, 2048, 7, 7]           4,096
          Conv2d-155           [-1, 2048, 7, 7]       2,097,152
     BatchNorm2d-156           [-1, 2048, 7, 7]           4,096
   ResNeXt_Block-157           [-1, 2048, 7, 7]               0
          Conv2d-158           [-1, 1024, 7, 7]       2,097,152
     BatchNorm2d-159           [-1, 1024, 7, 7]           2,048
       BN_Conv2d-160           [-1, 1024, 7, 7]               0
          Conv2d-161           [-1, 1024, 7, 7]         294,912
     BatchNorm2d-162           [-1, 1024, 7, 7]           2,048
       BN_Conv2d-163           [-1, 1024, 7, 7]               0
          Conv2d-164           [-1, 2048, 7, 7]       2,099,200
     BatchNorm2d-165           [-1, 2048, 7, 7]           4,096
          Conv2d-166           [-1, 2048, 7, 7]       4,194,304
     BatchNorm2d-167           [-1, 2048, 7, 7]           4,096
   ResNeXt_Block-168           [-1, 2048, 7, 7]               0
          Conv2d-169           [-1, 1024, 7, 7]       2,097,152
     BatchNorm2d-170           [-1, 1024, 7, 7]           2,048
       BN_Conv2d-171           [-1, 1024, 7, 7]               0
          Conv2d-172           [-1, 1024, 7, 7]         294,912
     BatchNorm2d-173           [-1, 1024, 7, 7]           2,048
       BN_Conv2d-174           [-1, 1024, 7, 7]               0
          Conv2d-175           [-1, 2048, 7, 7]       2,099,200
     BatchNorm2d-176           [-1, 2048, 7, 7]           4,096
          Conv2d-177           [-1, 2048, 7, 7]       4,194,304
     BatchNorm2d-178           [-1, 2048, 7, 7]           4,096
   ResNeXt_Block-179           [-1, 2048, 7, 7]               0
          Linear-180                    [-1, 4]           8,196
================================================================
Total params: 37,574,724
Trainable params: 37,574,724
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 0.57
Forward/backward pass size (MB): 379.37
Params size (MB): 143.34
Estimated Total Size (MB): 523.28
----------------------------------------------------------------

三、 训练模型

1. 编写训练函数

#训练循环
def train(dataloader,model,loss_fn,optimizer):
    size=len(dataloader.dataset) #训练集的大小
    num_batches=len(dataloader)  #批次数目,(size/batch_size,向上取整)
    
    train_loss,train_acc=0,0  #初始化训练损失和正确率
    
    for x,y in dataloader:  #获取图片及其标签
        x,y=x.to(device),y.to(device)
        
        #计算预测误差
        pred=model(x)  #网络输出
        loss=loss_fn(pred,y) #计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失
        
        #反向传播
        optimizer.zero_grad() #grad属性归零
        loss.backward()  #反向传播
        optimizer.step()  #每一步自动更新
        
        #记录acc与loss
        train_acc+=(pred.argmax(1)==y).type(torch.float).sum().item()
        train_loss+=loss.item()
        
    train_acc/=size
    train_loss/=num_batches
    
    return train_acc,train_loss

2. 编写测试函数

测试函数和训练函数大致相同,但是由于不进行梯度下降对网络权重进行更新,所以不需要传入优化器

def test(dataloader,model,loss_fn):
    size=len(dataloader.dataset) #测试集的大小
    num_batches=len(dataloader)  #批次数目
    test_loss,test_acc=0,0
    
    #当不进行训练时,停止梯度更新,节省计算内存消耗
    with torch.no_grad():
        for imgs,target in dataloader:
            imgs,target=imgs.to(device),target.to(device)
            
            #计算loss
            target_pred=model(imgs)
            loss=loss_fn(target_pred,target)
            
            test_loss+=loss.item()
            test_acc+=(target_pred.argmax(1)==target).type(torch.float).sum().item()
            
    test_acc/=size
    test_loss/=num_batches
    
    return test_acc,test_loss

3. 正式训练

import copy
optimizer=torch.optim.Adam(model.parameters(),lr=1e-4)  #创建优化器,并设置学习率
loss_fn=nn.CrossEntropyLoss()  #创建损失函数 

epochs=100

train_loss=[]
train_acc=[]
test_loss=[]
test_acc=[]

best_acc=0  #设置一个最佳准确率,作为最佳模型的判别指标

for epoch in range(epochs):
    
    model.train()
    epoch_train_acc,epoch_train_loss=train(train_dl,model,loss_fn,optimizer)
    
    model.eval()
    epoch_test_acc,epoch_test_loss=test(test_dl,model,loss_fn)
    
    #保存最佳模型到J6_model
    if epoch_test_acc>best_acc:
        best_acc=epoch_test_acc
        J6_model=copy.deepcopy(model)
        
    train_acc.append(epoch_train_acc)
    train_loss.append(epoch_train_loss)
    test_acc.append(epoch_test_acc)
    test_loss.append(epoch_test_loss)
    
    #获取当前学习率
    lr=optimizer.state_dict()['param_groups'][0]['lr']
    
    template=('Epoch:{:2d},Train_acc:{:.1f}%,Train_loss:{:.3f},Test_acc:{:.1f}%,Test_loss:{:.3f},Lr:{:.2E}')
    print(template.format(epoch+1,epoch_train_acc*100,epoch_train_loss,
                          epoch_test_acc*100,epoch_test_loss,lr))
    
#保存最佳模型到文件中
PATH=r'D:\THE MNIST DATABASE\J-series\J6_model.pth'
torch.save(model.state_dict(),PATH)

print('Done')

运行结果:

Epoch: 1,Train_acc:57.0%,Train_loss:1.159,Test_acc:59.0%,Test_loss:1.152,Lr:1.00E-04
Epoch: 2,Train_acc:59.7%,Train_loss:1.133,Test_acc:64.6%,Test_loss:1.089,Lr:1.00E-04
Epoch: 3,Train_acc:64.0%,Train_loss:1.097,Test_acc:62.0%,Test_loss:1.117,Lr:1.00E-04
Epoch: 4,Train_acc:63.9%,Train_loss:1.095,Test_acc:63.9%,Test_loss:1.096,Lr:1.00E-04
Epoch: 5,Train_acc:64.2%,Train_loss:1.100,Test_acc:68.1%,Test_loss:1.067,Lr:1.00E-04
Epoch: 6,Train_acc:64.6%,Train_loss:1.094,Test_acc:61.5%,Test_loss:1.132,Lr:1.00E-04
Epoch: 7,Train_acc:65.5%,Train_loss:1.077,Test_acc:70.4%,Test_loss:1.032,Lr:1.00E-04
Epoch: 8,Train_acc:65.2%,Train_loss:1.088,Test_acc:66.4%,Test_loss:1.072,Lr:1.00E-04
Epoch: 9,Train_acc:67.2%,Train_loss:1.064,Test_acc:74.4%,Test_loss:1.008,Lr:1.00E-04
Epoch:10,Train_acc:66.1%,Train_loss:1.080,Test_acc:68.5%,Test_loss:1.052,Lr:1.00E-04
Epoch:11,Train_acc:65.6%,Train_loss:1.078,Test_acc:69.9%,Test_loss:1.040,Lr:1.00E-04
Epoch:12,Train_acc:66.9%,Train_loss:1.062,Test_acc:76.2%,Test_loss:0.982,Lr:1.00E-04
Epoch:13,Train_acc:65.9%,Train_loss:1.077,Test_acc:74.1%,Test_loss:1.002,Lr:1.00E-04
Epoch:14,Train_acc:65.5%,Train_loss:1.084,Test_acc:59.4%,Test_loss:1.144,Lr:1.00E-04
Epoch:15,Train_acc:62.5%,Train_loss:1.113,Test_acc:56.9%,Test_loss:1.171,Lr:1.00E-04
Epoch:16,Train_acc:66.5%,Train_loss:1.069,Test_acc:67.4%,Test_loss:1.065,Lr:1.00E-04
Epoch:17,Train_acc:68.0%,Train_loss:1.054,Test_acc:73.9%,Test_loss:1.005,Lr:1.00E-04
Epoch:18,Train_acc:67.5%,Train_loss:1.052,Test_acc:73.9%,Test_loss:0.989,Lr:1.00E-04
Epoch:19,Train_acc:68.6%,Train_loss:1.048,Test_acc:67.8%,Test_loss:1.049,Lr:1.00E-04
Epoch:20,Train_acc:70.0%,Train_loss:1.035,Test_acc:70.2%,Test_loss:1.033,Lr:1.00E-04
Epoch:21,Train_acc:70.6%,Train_loss:1.040,Test_acc:62.9%,Test_loss:1.107,Lr:1.00E-04
Epoch:22,Train_acc:71.0%,Train_loss:1.023,Test_acc:71.3%,Test_loss:1.036,Lr:1.00E-04
Epoch:23,Train_acc:72.5%,Train_loss:1.014,Test_acc:76.0%,Test_loss:0.981,Lr:1.00E-04
Epoch:24,Train_acc:70.9%,Train_loss:1.035,Test_acc:75.3%,Test_loss:0.993,Lr:1.00E-04
Epoch:25,Train_acc:72.5%,Train_loss:1.012,Test_acc:76.7%,Test_loss:0.974,Lr:1.00E-04
Epoch:26,Train_acc:70.8%,Train_loss:1.028,Test_acc:72.7%,Test_loss:1.004,Lr:1.00E-04
Epoch:27,Train_acc:72.7%,Train_loss:1.009,Test_acc:73.2%,Test_loss:1.011,Lr:1.00E-04
Epoch:28,Train_acc:73.8%,Train_loss:1.006,Test_acc:75.3%,Test_loss:0.991,Lr:1.00E-04
Epoch:29,Train_acc:74.5%,Train_loss:0.992,Test_acc:74.6%,Test_loss:0.986,Lr:1.00E-04
Epoch:30,Train_acc:73.3%,Train_loss:1.005,Test_acc:73.2%,Test_loss:1.004,Lr:1.00E-04
Epoch:31,Train_acc:75.7%,Train_loss:0.993,Test_acc:77.4%,Test_loss:0.968,Lr:1.00E-04
Epoch:32,Train_acc:74.6%,Train_loss:0.989,Test_acc:72.3%,Test_loss:1.016,Lr:1.00E-04
Epoch:33,Train_acc:76.6%,Train_loss:0.973,Test_acc:70.2%,Test_loss:1.042,Lr:1.00E-04
Epoch:34,Train_acc:75.2%,Train_loss:0.982,Test_acc:74.6%,Test_loss:0.992,Lr:1.00E-04
Epoch:35,Train_acc:71.5%,Train_loss:1.018,Test_acc:77.6%,Test_loss:0.977,Lr:1.00E-04
Epoch:36,Train_acc:74.4%,Train_loss:1.006,Test_acc:76.7%,Test_loss:0.973,Lr:1.00E-04
Epoch:37,Train_acc:72.0%,Train_loss:1.012,Test_acc:76.9%,Test_loss:0.978,Lr:1.00E-04
Epoch:38,Train_acc:71.5%,Train_loss:1.030,Test_acc:72.7%,Test_loss:1.017,Lr:1.00E-04
Epoch:39,Train_acc:75.1%,Train_loss:0.987,Test_acc:76.5%,Test_loss:0.979,Lr:1.00E-04
Epoch:40,Train_acc:75.4%,Train_loss:0.989,Test_acc:75.8%,Test_loss:0.979,Lr:1.00E-04
Epoch:41,Train_acc:78.1%,Train_loss:0.968,Test_acc:77.9%,Test_loss:0.963,Lr:1.00E-04
Epoch:42,Train_acc:77.2%,Train_loss:0.977,Test_acc:74.4%,Test_loss:0.987,Lr:1.00E-04
Epoch:43,Train_acc:77.9%,Train_loss:0.968,Test_acc:73.7%,Test_loss:0.994,Lr:1.00E-04
Epoch:44,Train_acc:79.1%,Train_loss:0.954,Test_acc:78.8%,Test_loss:0.953,Lr:1.00E-04
Epoch:45,Train_acc:79.6%,Train_loss:0.950,Test_acc:79.3%,Test_loss:0.949,Lr:1.00E-04
Epoch:46,Train_acc:80.2%,Train_loss:0.938,Test_acc:79.0%,Test_loss:0.948,Lr:1.00E-04
Epoch:47,Train_acc:80.6%,Train_loss:0.943,Test_acc:78.3%,Test_loss:0.962,Lr:1.00E-04
Epoch:48,Train_acc:75.9%,Train_loss:0.982,Test_acc:73.0%,Test_loss:1.013,Lr:1.00E-04
Epoch:49,Train_acc:77.3%,Train_loss:0.966,Test_acc:76.2%,Test_loss:0.977,Lr:1.00E-04
Epoch:50,Train_acc:79.9%,Train_loss:0.947,Test_acc:74.4%,Test_loss:0.991,Lr:1.00E-04
Epoch:51,Train_acc:80.4%,Train_loss:0.944,Test_acc:75.1%,Test_loss:0.986,Lr:1.00E-04
Epoch:52,Train_acc:79.2%,Train_loss:0.953,Test_acc:77.2%,Test_loss:0.970,Lr:1.00E-04
Epoch:53,Train_acc:80.0%,Train_loss:0.939,Test_acc:78.8%,Test_loss:0.951,Lr:1.00E-04
Epoch:54,Train_acc:79.0%,Train_loss:0.954,Test_acc:80.2%,Test_loss:0.944,Lr:1.00E-04
Epoch:55,Train_acc:82.7%,Train_loss:0.923,Test_acc:79.0%,Test_loss:0.945,Lr:1.00E-04
Epoch:56,Train_acc:81.9%,Train_loss:0.926,Test_acc:80.0%,Test_loss:0.939,Lr:1.00E-04
Epoch:57,Train_acc:82.8%,Train_loss:0.915,Test_acc:76.2%,Test_loss:0.973,Lr:1.00E-04
Epoch:58,Train_acc:81.7%,Train_loss:0.926,Test_acc:82.8%,Test_loss:0.918,Lr:1.00E-04
Epoch:59,Train_acc:83.2%,Train_loss:0.918,Test_acc:81.4%,Test_loss:0.931,Lr:1.00E-04
Epoch:60,Train_acc:82.5%,Train_loss:0.916,Test_acc:81.4%,Test_loss:0.926,Lr:1.00E-04
Epoch:61,Train_acc:79.6%,Train_loss:0.950,Test_acc:78.8%,Test_loss:0.946,Lr:1.00E-04
Epoch:62,Train_acc:83.4%,Train_loss:0.914,Test_acc:80.2%,Test_loss:0.940,Lr:1.00E-04
Epoch:63,Train_acc:86.0%,Train_loss:0.893,Test_acc:80.2%,Test_loss:0.940,Lr:1.00E-04
Epoch:64,Train_acc:84.1%,Train_loss:0.899,Test_acc:80.9%,Test_loss:0.921,Lr:1.00E-04
Epoch:65,Train_acc:84.2%,Train_loss:0.905,Test_acc:82.1%,Test_loss:0.917,Lr:1.00E-04
Epoch:66,Train_acc:85.5%,Train_loss:0.894,Test_acc:80.9%,Test_loss:0.934,Lr:1.00E-04
Epoch:67,Train_acc:83.7%,Train_loss:0.913,Test_acc:80.0%,Test_loss:0.942,Lr:1.00E-04
Epoch:68,Train_acc:83.4%,Train_loss:0.907,Test_acc:81.8%,Test_loss:0.913,Lr:1.00E-04
Epoch:69,Train_acc:85.2%,Train_loss:0.892,Test_acc:81.8%,Test_loss:0.926,Lr:1.00E-04
Epoch:70,Train_acc:86.1%,Train_loss:0.884,Test_acc:82.1%,Test_loss:0.928,Lr:1.00E-04
Epoch:71,Train_acc:82.5%,Train_loss:0.918,Test_acc:81.4%,Test_loss:0.929,Lr:1.00E-04
Epoch:72,Train_acc:85.9%,Train_loss:0.892,Test_acc:81.6%,Test_loss:0.920,Lr:1.00E-04
Epoch:73,Train_acc:85.2%,Train_loss:0.893,Test_acc:79.3%,Test_loss:0.944,Lr:1.00E-04
Epoch:74,Train_acc:87.2%,Train_loss:0.875,Test_acc:85.8%,Test_loss:0.884,Lr:1.00E-04
Epoch:75,Train_acc:86.7%,Train_loss:0.876,Test_acc:84.8%,Test_loss:0.893,Lr:1.00E-04
Epoch:76,Train_acc:86.5%,Train_loss:0.875,Test_acc:83.4%,Test_loss:0.903,Lr:1.00E-04
Epoch:77,Train_acc:87.0%,Train_loss:0.878,Test_acc:85.8%,Test_loss:0.884,Lr:1.00E-04
Epoch:78,Train_acc:88.3%,Train_loss:0.861,Test_acc:86.0%,Test_loss:0.888,Lr:1.00E-04
Epoch:79,Train_acc:87.2%,Train_loss:0.869,Test_acc:86.0%,Test_loss:0.883,Lr:1.00E-04
Epoch:80,Train_acc:87.1%,Train_loss:0.877,Test_acc:85.8%,Test_loss:0.886,Lr:1.00E-04
Epoch:81,Train_acc:88.4%,Train_loss:0.859,Test_acc:82.8%,Test_loss:0.913,Lr:1.00E-04
Epoch:82,Train_acc:88.9%,Train_loss:0.851,Test_acc:85.8%,Test_loss:0.878,Lr:1.00E-04
Epoch:83,Train_acc:88.4%,Train_loss:0.859,Test_acc:84.8%,Test_loss:0.893,Lr:1.00E-04
Epoch:84,Train_acc:89.0%,Train_loss:0.860,Test_acc:84.1%,Test_loss:0.900,Lr:1.00E-04
Epoch:85,Train_acc:89.9%,Train_loss:0.850,Test_acc:84.1%,Test_loss:0.899,Lr:1.00E-04
Epoch:86,Train_acc:89.5%,Train_loss:0.850,Test_acc:83.0%,Test_loss:0.913,Lr:1.00E-04
Epoch:87,Train_acc:88.7%,Train_loss:0.854,Test_acc:86.0%,Test_loss:0.885,Lr:1.00E-04
Epoch:88,Train_acc:91.2%,Train_loss:0.837,Test_acc:80.9%,Test_loss:0.928,Lr:1.00E-04
Epoch:89,Train_acc:91.7%,Train_loss:0.831,Test_acc:86.0%,Test_loss:0.883,Lr:1.00E-04
Epoch:90,Train_acc:87.4%,Train_loss:0.863,Test_acc:84.1%,Test_loss:0.900,Lr:1.00E-04
Epoch:91,Train_acc:90.1%,Train_loss:0.851,Test_acc:86.2%,Test_loss:0.878,Lr:1.00E-04
Epoch:92,Train_acc:88.3%,Train_loss:0.855,Test_acc:86.7%,Test_loss:0.871,Lr:1.00E-04
Epoch:93,Train_acc:90.5%,Train_loss:0.844,Test_acc:85.8%,Test_loss:0.884,Lr:1.00E-04
Epoch:94,Train_acc:92.4%,Train_loss:0.821,Test_acc:85.3%,Test_loss:0.881,Lr:1.00E-04
Epoch:95,Train_acc:91.4%,Train_loss:0.835,Test_acc:86.2%,Test_loss:0.878,Lr:1.00E-04
Epoch:96,Train_acc:92.2%,Train_loss:0.829,Test_acc:82.3%,Test_loss:0.917,Lr:1.00E-04
Epoch:97,Train_acc:90.0%,Train_loss:0.848,Test_acc:83.2%,Test_loss:0.913,Lr:1.00E-04
Epoch:98,Train_acc:90.8%,Train_loss:0.836,Test_acc:87.9%,Test_loss:0.868,Lr:1.00E-04
Epoch:99,Train_acc:89.6%,Train_loss:0.848,Test_acc:83.7%,Test_loss:0.908,Lr:1.00E-04
Epoch:100,Train_acc:91.0%,Train_loss:0.832,Test_acc:86.2%,Test_loss:0.881,Lr:1.00E-04
Done

四、 结果可视化

1. Loss与Accuracy图

import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore")   #忽略警告信息
plt.rcParams['font.sans-serif']=['SimHei']   #正常显示中文标签
plt.rcParams['axes.unicode_minus']=False   #正常显示负号
plt.rcParams['figure.dpi']=300   #分辨率
 
epochs_range=range(epochs)
plt.figure(figsize=(12,3))
 
plt.subplot(1,2,1)
plt.plot(epochs_range,train_acc,label='Training Accuracy')
plt.plot(epochs_range,test_acc,label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')
 
plt.subplot(1,2,2)
plt.plot(epochs_range,train_loss,label='Training Loss')
plt.plot(epochs_range,test_loss,label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

运行结果:

2. 指定图片进行预测 

from PIL import Image
 
classes=list(total_data.class_to_idx)
 
def predict_one_image(image_path,model,transform,classes):
    
    test_img=Image.open(image_path).convert('RGB')
    plt.imshow(test_img)   #展示预测的图片
    
    test_img=transform(test_img)
    img=test_img.to(device).unsqueeze(0)
    
    model.eval()
    output=model(img)
    
    _,pred=torch.max(output,1)
    pred_class=classes[pred]
    print(f'预测结果是:{pred_class}')

预测图片:

#预测训练集中的某张照片
predict_one_image(image_path=r'D:\THE MNIST DATABASE\P4-data\Others\NM01_01_00.jpg',
                  model=model,transform=train_transforms,classes=classes)

运行结果:

预测结果是:Others

3. 模型评估

J6_model.eval()
epoch_test_acc,epoch_test_loss=test(test_dl,J6_model,loss_fn)
epoch_test_acc,epoch_test_loss

五、心得体会

在pytorch环境下手动搭建了ResNeXt-50模型,深刻理解了该模型的构造原理,对该模型有了更深层次的感悟。但模型训练结果没有达到最为理想的状态,时间原因不再做调整,在今后的测试中可以尝试调整学习率等查看结果是否有较好变化。

举报

相关推荐

0 条评论