0
点赞
收藏
分享

微信扫一扫

BFPRT 算法 (TOP-K 问题)——本质就是在利用分组中位数的中位数来找到较快排更合适的pivot元素

BFPRT 算法 (TOP-K 问题)——本质就是在利用分组中位数的中位数来找到较快排更合适的pivot元素_时间复杂度

面为代码实现,其所求为前 k 小的数:

#include <iostream>
#include <algorithm>

using namespace std;

int InsertSort(int array[], int left, int right);
int GetPivotIndex(int array[], int left, int right);
int Partition(int array[], int left, int right, int pivot_index);
int BFPRT(int array[], int left, int right, int k);

int main()
{
    int k = 8; // 1 <= k <= array.size
    int array[20] = { 11,9,10,1,13,8,15,0,16,2,17,5,14,3,6,18,12,7,19,4 };

    cout << "原数组:";
    for (int i = 0; i < 20; i++)
        cout << array[i] << " ";
    cout << endl;

    // 因为是以 k 为划分,所以还可以求出第 k 小值
    cout << "第 " << k << " 小值为:" << array[BFPRT(array, 0, 19, k)] << endl;

    cout << "变换后的数组:";
    for (int i = 0; i < 20; i++)
        cout << array[i] << " ";
    cout << endl;

    return 0;
}

/**
 * 对数组 array[left, right] 进行插入排序,并返回 [left, right]
 * 的中位数。
 */
int InsertSort(int array[], int left, int right)
{
    int temp;
    int j;

    for (int i = left + 1; i <= right; i++)
    {
        temp = array[i];
        j = i - 1;
        while (j >= left && array[j] > temp)
            array[j + 1] = array[j--];
        array[j + 1] = temp;
    }

    return ((right - left) >> 1) + left;
}

/**
 * 数组 array[left, right] 每五个元素作为一组,并计算每组的中位数,
 * 最后返回这些中位数的中位数下标(即主元下标)。
 *
 * @attention 末尾返回语句最后一个参数多加一个 1 的作用其实就是向上取整的意思,
 * 这样可以始终保持 k 大于 0。
 */
int GetPivotIndex(int array[], int left, int right)
{
    if (right - left < 5)
        return InsertSort(array, left, right);

    int sub_right = left - 1;

    // 每五个作为一组,求出中位数,并把这些中位数全部依次移动到数组左边
    for (int i = left; i + 4 <= right; i += 5)
    {
        int index = InsertSort(array, i, i + 4);
        swap(array[++sub_right], array[index]);
    }

    // 利用 BFPRT 得到这些中位数的中位数下标(即主元下标)
    return BFPRT(array, left, sub_right, ((sub_right - left + 1) >> 1) + 1);
}

/**
 * 利用主元下标 pivot_index 进行对数组 array[left, right] 划分,并返回
 * 划分后的分界线下标。
 */
int Partition(int array[], int left, int right, int pivot_index)
{
    swap(array[pivot_index], array[right]); // 把主元放置于末尾

    int partition_index = left; // 跟踪划分的分界线
    for (int i = left; i < right; i++)
    {
        if (array[i] < array[right])
        {
            swap(array[partition_index++], array[i]); // 比主元小的都放在左侧
        }
    }

    swap(array[partition_index], array[right]); // 最后把主元换回来

    return partition_index;
}

/**
 * 返回数组 array[left, right] 的第 k 小数的下标
 */
int BFPRT(int array[], int left, int right, int k)
{
    int pivot_index = GetPivotIndex(array, left, right); // 得到中位数的中位数下标(即主元下标)
    int partition_index = Partition(array, left, right, pivot_index); // 进行划分,返回划分边界
    int num = partition_index - left + 1;

    if (num == k)
        return partition_index;
    else if (num > k)
        return BFPRT(array, left, partition_index - 1, k);
    else
        return BFPRT(array, partition_index + 1, right, k - num);
}

运行如下:

原数组:11 9 10 1 13 8 15 0 16 2 17 5 14 3 6 18 12 7 19 4
第 8 小值为:7
变换后的数组:4 0 1 3 2 5 6 7 8 9 10 12 13 14 17 15 16 11 18 19

BFPRT 算法 (TOP-K 问题)——本质就是在利用分组中位数的中位数来找到较快排更合适的pivot元素_中位数_02

BFPRT 算法 (TOP-K 问题)——本质就是在利用分组中位数的中位数来找到较快排更合适的pivot元素_中位数_03

我们选取的x可以在每次递归的时候最少淘汰(n/10-2)x3的数据量

举报

相关推荐

0 条评论