1. 相关运算与卷积运算什么区别?
在只考虑R这个实数域下

这两个式子在表达上只有一个差别,就是在运算时,后面的函数的变量多了一个负号。
以下区别
-
卷积是对称的 conv(f,g)=conv(g,f)。而滑动相关不对称,ccorr(f,g)~=ccorr(g,f)。
-
卷积是两个系统作用时的响应,(由于对称性,谁作用于谁并不本质)。滑动相关是衡量两个函数相似度,与相对位置之间的关系。
-
信号处理上卷积可以进行局部操作(就是滤波),例如图像的高斯模糊。系统响应分析。滑动相关一般用来进行特征检测,比如图像特征提取。
2. 空域平滑主要去掉了什么信息?空域锐化突出了什么类型的信息?
-
平滑技术是为了减少图像的噪声。一般情况下,在空域内用邻域平均减少噪声;在频域内用低通滤波来减少噪声
-
锐化技术是为了突出边缘,加强轮廓特征。在空域内用微分法使图像清晰;在频域内用高通滤波来清晰图像。
3. 实现点运算算法
图片求反
核心代码
def inversion_f(digit):
return 255 - digit
效果

增强对比度
核心代码
def contrast_f(image, x1, y1, x2, y2):
f = np.zeros(256)
for i in range(len(f)):
if i < x1:
f[i] = y1/x1 *i
elif i < x2:
f[i] = ((y2 - y1) / (x2 - x1)) * (i - x1) + y1
else:
f[i] = ((y2 - 255.0) / (x2 - 255.0)) * (i - 255.0) + 255.0
#f = [np.round(i)for i in f]
image = cv2.LUT(image, f)#f的一一映射
return np.uint8(image+0.5)
效果和函数图像


log 变换
核心代码
def logf(image,alpha):
return np.uint8( alpha * np.log(1 + image) + 0.5)
效果


Gamma变换
s
=
c
r
γ
灰
度
归
一
化
r
∈
[
0
,
1
]
,
γ
和
c
是
自
定
义
的
s = cr^\gamma\quad 灰度归一化r∈[0,1],\gamma和c是自定义的
s=crγ灰度归一化r∈[0,1],γ和c是自定义的
核心代码
def gammaf(image, c, g):
f = np.zeros(256)
for i in range(256):
f[i] = c * i ** g
image = cv2.LUT(image, f)
return np.uint8(image + 0.5)
效果


此处gamma = 2.5
4. 实现空域平滑算法
空域平滑的本质是使用卷积来进行计算
离散化格式如下

均值
核心代码
mat = np.array([
[1/9,1/9,1/9],
[1/9,1/9,1/9],
[1/9,1/9,1/9]
])
for y in range(1,height+1):
for x in range(1,width+1):
new_img[y-1][x-1] = (
mat[0][0]*con[y+1][x+1] + mat[0][1]*con[y+1][x] + mat[0][2]*con[y+1][x-1]+
mat[1][0]*con[y][x+1] + mat[1][1]*con[y][x] + mat[1][2]*con[y][x-1] +
mat[2][0]*con[y-1][x+1] + mat[2][1]*con[y-1][x] + mat[2][2]*con[y-1][x-1]
效果

加权均值
核心代码
mat = np.array([
[1/16,2/16,1/16],
[2/16,4/16,2/16],
[1/16,2/16,1/16]
])
#其余部分几乎一致
效果

中值
对相邻的奇数个点进行排序并取中间值作为新值
核心代码
arr = np.array((0,0,0,0,0))
new_gray = np.zeros_like(gray)
for y in range(height):
for x in range(width):
for i in range(5):
if (x-2+i < 0 or x-2+i >= width):
arr[i] = 0
else: arr[i] = gray[y][x-2+i]
arr.sort()
new_gray[y][x] = arr[2]
效果

5. 实现空域锐化算法
锐 化 便 得 使 用 相 关 运 算 锐化便得使用相关运算 锐化便得使用相关运算
sobel
核心代码
mat1 = np.array([
[-1,-2,-1],
[0,0,0],
[1,2,1]
])
mat2 = np.array([
[-1,0,1],
[-2,0,2],
[-1,0,1]
])
for y in range(1,height+1):
for x in range(1,width+1):
new_img[y-1][x-1] = (
mat1[0][0]*con[y-1][x-1] + mat1[0][1]*con[y-1][x] + mat1[0][2]*con[y-1][x+1]+
mat1[1][0]*con[y][x-1] + mat1[1][1]*con[y][x] + mat1[1][2]*con[y][x+1] +
mat1[2][0]*con[y+1][x-1] + mat1[2][1]*con[y+1][x] + mat1[2][2]*con[y+1][x+1]
)
效果

prewitt
核心代码
mat1 = np.array([
[-1,0,1],
[-1,0,1],
[-1,0,1]
])
mat2 = np.array([
[1,1,1],
[0,0,0],
[-1,-1,-1]
])
#其余基本一致

效果
krisch
核心代码
mat1 = np.array([
[5,5,5],
[-3,0,-3],
[-3,-3,-3]
])
mat2 = np.array([
[-3,-3,-3],
[5,0,-3],
[5,5,-3]
])

效果
laplace
核心代码
mat1 = np.array([
[1,1,1],
[1,-8,1],
[1,1,1]
])
mat1*=-1
mat2 = np.array([
[0,-1,0],
[-1,4,-1],
[0,-1,0]
])
效果

整合代码
from multiprocessing.connection import wait
from turtle import heading
from cv2 import waitKey
import numpy as np
import cv2
import math
import matplotlib.pyplot as plt
class point_ope():
def inversion_f(digit):
return 255 - digit
def inversion(image):
cv2.imshow('',image)
gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
cv2.imshow('start',gray)
for i in range(len(gray)):
gray[i] = point_ope.inversion_f(gray[i])
image[i] = point_ope.inversion_f(image[i])
cv2.imshow('gray',gray)
cv2.imshow('new',image)
x = np.arange(0,256)
y = 255 - x
plt.figure(dpi=50)
plt.plot(x, y ,"b")
plt.show()#展现函数形式
cv2.waitKey(0)
def contrast_f(image, x1, y1, x2, y2):
f = np.zeros(256)
for i in range(len(f)):
if i < x1:
f[i] = y1/x1 *i
elif i < x2:
f[i] = ((y2 - y1) / (x2 - x1)) * (i - x1) + y1
else:
f[i] = ((y2 - 255.0) / (x2 - 255.0)) * (i - 255.0) + 255.0
#f = [np.round(i)for i in f]
image = cv2.LUT(image, f)#f的一一映射
return np.uint8(image+0.5)
def contrast(image):
cv2.imshow('init', image)
gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
cv2.imshow('gray', gray)
x1 = 50
y1 = 25
x2 = 205
y2 = 230
new = point_ope.contrast_f(image, x1, y1, x2, y2)
gray =point_ope.contrast_f(gray, x1, y1, x2, y2)
cv2.imshow('after', new)
cv2.imshow('after gray', gray)
plt.figure(dpi=50 )
plt.rc('font',family = 'SimHei')#显示中文
plt.plot([0, x1, x2, 255], [0, y1, y2, 255], 'b', linewidth=1)
plt.plot([x1, x1, 0], [0, y1, y1], 'r--')
plt.plot([x2, x2, 0], [0, y2, y2], 'r--')
plt.title('自定义函数')
plt.xlim([0, 255]), plt.ylim([0, 255])
plt.show()
cv2.waitKey(0)
def logf(image,alpha):
return np.uint8( alpha * np.log(1 + image) + 0.5)
def log(image):
cv2.imshow('init', image)
gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
cv2.imshow('gray', gray)
r = 1
alpha = 255/np.log(1+255*r)
new = point_ope.logf(image, alpha)
gray =point_ope.logf(gray, alpha)
cv2.imshow('after', new)
cv2.imshow('after gray', gray)
x = np.arange(0,256,0.01)
y = alpha * np.log(1 + x)
plt.figure(dpi=50 )
plt.rc('font',family = 'SimHei')#显示中文
plt.plot(x, y, 'b', linewidth = 1)
plt.title('log函数')
plt.xlim([0, 256]), plt.ylim([0, 256])
plt.show()
cv2.waitKey(0)
def gammaf(image, c, g):
f = np.zeros(256)
for i in range(256):
f[i] = c * i ** g
image = cv2.LUT(image, f)
return np.uint8(image + 0.5)
def gamma(image):
cv2.imshow('init', image)
gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
cv2.imshow('gray', gray)
g = 2.5
c = 255/(255**g)
print(c*255**g)
new = point_ope.gammaf(image, c, g)
gray =point_ope.gammaf(gray, c, g)
cv2.imshow('after', new)
cv2.imshow('after gray', gray)
plt.figure(dpi=50 )
plt.rc('font',family = 'SimHei')#显示中文
plt.title('自定义函数')
plt.xlim([0, 255]), plt.ylim([0, 255])
x = np.arange(0,256,0.01)
y = (c * x ** g)
plt.plot(x, y, 'r', linewidth = 1)
plt.show()
cv2.waitKey(0)
class spatial_smooth():
def mean(image):
cv2.imshow("image", image)
mat = np.array([
[1/9,1/9,1/9],
[1/9,1/9,1/9],
[1/9,1/9,1/9]
])
res = cv2.filter2D(image, -1, mat);
cv2.imshow("?",res)
#自己的实现
height, width = image.shape[:2]
con = np.zeros((height+2, width+2, 3))
new_img = np.zeros_like(image,dtype=np.uint8)
for y in range(height):
for x in range(width):
con[y+1][x+1] = image[y][x]
for y in range(1,height+1):
for x in range(1,width+1):
new_img[y-1][x-1] = (
mat[0][0]*con[y+1][x+1] + mat[0][1]*con[y+1][x] + mat[0][2]*con[y+1][x-1]+
mat[1][0]*con[y][x+1] + mat[1][1]*con[y][x] + mat[1][2]*con[y][x-1] +
mat[2][0]*con[y-1][x+1] + mat[2][1]*con[y-1][x] + mat[2][2]*con[y-1][x-1]
)
cv2.imshow("new", np.uint8(new_img))
waitKey(0)
def weighted_mean(image):
#在矩阵元素为9的情况下,高斯平均等于加权平均
cv2.imshow("image", image)
mat = np.array([
[1/16,2/16,1/16],
[2/16,4/16,2/16],
[1/16,2/16,1/16]
])
res = cv2.filter2D(image, -1, mat);
cv2.imshow("?",res)
#自己的实现
height, width = image.shape[:2]
con = np.zeros((height+2, width+2, 3))
new_img = np.zeros_like(image,dtype=np.uint8)
for y in range(height):
for x in range(width):
con[y+1][x+1] = image[y][x]
for y in range(1,height+1):
for x in range(1,width+1):
new_img[y-1][x-1] = (
mat[0][0]*con[y+1][x+1] + mat[0][1]*con[y+1][x] + mat[0][2]*con[y+1][x-1]+
mat[1][0]*con[y][x+1] + mat[1][1]*con[y][x] + mat[1][2]*con[y][x-1] +
mat[2][0]*con[y-1][x+1] + mat[2][1]*con[y-1][x] + mat[2][2]*con[y-1][x-1]
)
cv2.imshow("new", np.uint8(new_img))
waitKey(0)
def middle(image):
gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
height, width = gray.shape[:2]
arr = np.array((0,0,0,0,0))
new_gray = np.zeros_like(gray)
for y in range(height):
for x in range(width):
for i in range(5):
if (x-2+i < 0 or x-2+i >= width):
arr[i] = 0
else: arr[i] = gray[y][x-2+i]
arr.sort()
new_gray[y][x] = arr[2]
cv2.imshow("gray", gray)
cv2.imshow("new",new_gray)
waitKey(0)
class spatial_sharpening():
def sobel(image):
gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
mat1 = np.array([
[-1,-2,-1],
[0,0,0],
[1,2,1]
])
mat2 = np.array([
[-1,0,1],
[-2,0,2],
[-1,0,1]
])
#res = cv2.filter2D(image, -1, mat);
cv2.imshow("?",gray)
#自己的实现
height, width = gray.shape[:2]
con = np.zeros((height+2, width+2))
new_img = np.zeros_like(gray)
for y in range(height):
for x in range(width):
con[y+1][x+1] = gray[y][x]
for y in range(1,height+1):
for x in range(1,width+1):
new_img[y-1][x-1] = (
mat1[0][0]*con[y-1][x-1] + mat1[0][1]*con[y-1][x] + mat1[0][2]*con[y-1][x+1]+
mat1[1][0]*con[y][x-1] + mat1[1][1]*con[y][x] + mat1[1][2]*con[y][x+1] +
mat1[2][0]*con[y+1][x-1] + mat1[2][1]*con[y+1][x] + mat1[2][2]*con[y+1][x+1]
)
cv2.imshow("horizontal", np.uint8(new_img))
for y in range(1,height+1):
for x in range(1,width+1):
new_img[y-1][x-1] = (
mat2[0][0]*con[y-1][x-1] + mat2[0][1]*con[y-1][x] + mat2[0][2]*con[y-1][x+1]+
mat2[1][0]*con[y][x-1] + mat2[1][1]*con[y][x] + mat2[1][2]*con[y][x+1] +
mat2[2][0]*con[y+1][x-1] + mat2[2][1]*con[y+1][x] + mat2[2][2]*con[y+1][x+1]
)
cv2.imshow("portrait", np.uint8(new_img))
waitKey(0)
def prewitt(image):
gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
mat1 = np.array([
[-1,0,1],
[-1,0,1],
[-1,0,1]
])
mat2 = np.array([
[1,1,1],
[0,0,0],
[-1,-1,-1]
])
#res = cv2.filter2D(image, -1, mat);
cv2.imshow("?",gray)
#自己的实现
height, width = gray.shape[:2]
con = np.zeros((height+2, width+2))
new_img = np.zeros_like(gray)
for y in range(height):
for x in range(width):
con[y+1][x+1] = gray[y][x]
for y in range(1,height+1):
for x in range(1,width+1):
new_img[y-1][x-1] = (
mat1[0][0]*con[y-1][x-1] + mat1[0][1]*con[y-1][x] + mat1[0][2]*con[y-1][x+1]+
mat1[1][0]*con[y][x-1] + mat1[1][1]*con[y][x] + mat1[1][2]*con[y][x+1] +
mat1[2][0]*con[y+1][x-1] + mat1[2][1]*con[y+1][x] + mat1[2][2]*con[y+1][x+1]
)
cv2.imshow("horizontal", np.uint8(new_img))
for y in range(1,height+1):
for x in range(1,width+1):
new_img[y-1][x-1] = (
mat2[0][0]*con[y-1][x-1] + mat2[0][1]*con[y-1][x] + mat2[0][2]*con[y-1][x+1]+
mat2[1][0]*con[y][x-1] + mat2[1][1]*con[y][x] + mat2[1][2]*con[y][x+1] +
mat2[2][0]*con[y+1][x-1] + mat2[2][1]*con[y+1][x] + mat2[2][2]*con[y+1][x+1]
)
cv2.imshow("portrait", np.uint8(new_img))
waitKey(0)
def krisch(image):
gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
mat1 = np.array([
[5,5,5],
[-3,0,-3],
[-3,-3,-3]
])
mat2 = np.array([
[-3,-3,-3],
[5,0,-3],
[5,5,-3]
])
#res = cv2.filter2D(image, -1, mat);
cv2.imshow("?",gray)
#自己的实现
height, width = gray.shape[:2]
con = np.zeros((height+2, width+2))
new_img = np.zeros_like(gray)
for y in range(height):
for x in range(width):
con[y+1][x+1] = gray[y][x]
for y in range(1,height+1):
for x in range(1,width+1):
new_img[y-1][x-1] = (
mat1[0][0]*con[y-1][x-1] + mat1[0][1]*con[y-1][x] + mat1[0][2]*con[y-1][x+1]+
mat1[1][0]*con[y][x-1] + mat1[1][1]*con[y][x] + mat1[1][2]*con[y][x+1] +
mat1[2][0]*con[y+1][x-1] + mat1[2][1]*con[y+1][x] + mat1[2][2]*con[y+1][x+1]
)
cv2.imshow("mat1", np.uint8(new_img))
for y in range(1,height+1):
for x in range(1,width+1):
new_img[y-1][x-1] = (
mat2[0][0]*con[y-1][x-1] + mat2[0][1]*con[y-1][x] + mat2[0][2]*con[y-1][x+1]+
mat2[1][0]*con[y][x-1] + mat2[1][1]*con[y][x] + mat2[1][2]*con[y][x+1] +
mat2[2][0]*con[y+1][x-1] + mat2[2][1]*con[y+1][x] + mat2[2][2]*con[y+1][x+1]
)
cv2.imshow("mat2", np.uint8(new_img))
waitKey(0)
def laplace(image):
gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
mat1 = np.array([
[1,1,1],
[1,-8,1],
[1,1,1]
])
mat1*=-1
mat2 = np.array([
[0,-1,0],
[-1,4,-1],
[0,-1,0]
])
#res = cv2.filter2D(image, -1, mat);
cv2.imshow("?",gray)
#自己的实现
height, width = gray.shape[:2]
con = np.zeros((height+2, width+2))
new_img = np.zeros_like(gray)
for y in range(height):
for x in range(width):
con[y+1][x+1] = gray[y][x]
for y in range(1,height+1):
for x in range(1,width+1):
new_img[y-1][x-1] = (
mat1[0][0]*con[y-1][x-1] + mat1[0][1]*con[y-1][x] + mat1[0][2]*con[y-1][x+1]+
mat1[1][0]*con[y][x-1] + mat1[1][1]*con[y][x] + mat1[1][2]*con[y][x+1] +
mat1[2][0]*con[y+1][x-1] + mat1[2][1]*con[y+1][x] + mat1[2][2]*con[y+1][x+1]
)
cv2.imshow("mat1", np.uint8(new_img))
for y in range(1,height+1):
for x in range(1,width+1):
new_img[y-1][x-1] = (
mat2[0][0]*con[y-1][x-1] + mat2[0][1]*con[y-1][x] + mat2[0][2]*con[y-1][x+1]+
mat2[1][0]*con[y][x-1] + mat2[1][1]*con[y][x] + mat2[1][2]*con[y][x+1] +
mat2[2][0]*con[y+1][x-1] + mat2[2][1]*con[y+1][x] + mat2[2][2]*con[y+1][x+1]
)
cv2.imshow("mat2", np.uint8(new_img))
waitKey(0)
def test_point():
image = cv2.imread("pic4.png")
#point_ope.inversion(image)
#point_ope.contrast(image)
#point_ope.log(image)
point_ope.gamma(image)
def test_spatial():
image = cv2.imread("pic4.png")
#spatial_smooth.mean(image)
#spatial_smooth.weighted_mean(image)
image = cv2.imread("pic5.png")
spatial_smooth.middle(image)
def test_sharpen():
image = cv2.imread("pic4.png")
#spatial_sharpening.sobel(image)
#spatial_sharpening.prewitt(image)
#spatial_sharpening.krisch(image)
spatial_sharpening.laplace(image)
if __name__ == '__main__':
#test_point()
#test_spatial()
test_sharpen()










