文章目录
前言
Softmax回归也称多项或多类的Logistic回归,是Logistic回归在多分类问题上的推广。
一、训练集和测试集
使用上一节获取得到的数据集Fashion-MNIST。
二、步骤
1.引入库
import torch
import torchvision
import numpy as np
import sys
sys.path.append("..") # 为了导入上层目录的d2lzh_pytorch
from d2lzh_pytorch import *
import d2lzh_pytorch as d2l
2.读取数据
batch_size =256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
d2l.load_data_fashion_mnist(batch_size)
3.初始化模型参数
num_inputs =784
num_outputs = 10
W = torch.tensor(np.random.normal(0, 0.01, (num_inputs,num_outputs)),
dtype=torch.float)
b = torch.zeros(num_outputs, dtype=torch.float)
W.requires_grad_(requires_grad=True)
b.requires_grad_(requires_grad=True)
4.定义模型
def softmax(X):
X_exp = X.exp()
partition = X_exp.sum(dim=1, keepdim=True)
return X_exp / partition
def net(X):
return softmax(torch.mm(X.view((-1, num_inputs)),W) + b)
X.exp()
X_exp.sum(dim=1, keepdim=True)
5.定义损失函数
y_hat = torch.tensor([[0.1, 0.3, 0.6], [0.3, 0.2, 0.5]])
y = torch.LongTensor([0, 2])
y_hat.gather(1, y.view(-1, 1))
def cross_entropy(y_hat,y):
return - torch.log(y_hat.gather(1, y.view(-1,1)))
.LongTensor()
torch.gather(input, dim, index, out=None) → Tensor
6.计算分类准确率
def accuracy(y_hat,y):
return (y_hat.argmax(dim=1) == y).float().mean().item()
print(accuracy(y_hat, y))
.argmax(dim=1)
.item()
# 本函数已保存在d2lzh_pytorch包中方便以后使用。该函数将被逐步改进:它的完整实现将在“图像增广”一节中描述
def evaluate_accuracy(data_iter, net):
acc_sum, n = 0.0, 0
for X, y in data_iter:
acc_sum += (net(X).argmax(dim=1) == y).float().sum().item()
n += y.shape[0]
return acc_sum / n
7.训练模型
num_epochs, lr = 4, 0.1
train_ch3(net, train_iter, test_iter, cross_entropy, num_epochs, batch_size, [W, b], lr)
train_ch3(net, train_iter, test_iter, cross_entropy, num_epochs, batch_size, [W, b], lr)
8.预测
X ,y = iter(test_iter).next()
true_labels = d2l.get_fashion_mnist_labels(y.numpy())
pred_labels = d2l.get_fashion_mnist_labels(net(X).argmax(dim=1).numpy())
titles = [true +'\n' + pred for true, pred in zip(true_labels, pred_labels)]
d2l.show_fashion_mnist(X[0:9], titles[0:9])
总结
《动手学深度学习+PyTorch》3.6softmax回归的从零开始实现 学习笔记