0
点赞
收藏
分享

微信扫一扫

keras:ImageDataGenerator的flow方法


本文说明keras的​​ImageDataGenerator​​​对象方法 ​​flow​​ 如何作用的。

如下为测试代码:

import time
from keras.preprocessing.image import ImageDataGenerator
import numpy as np

imgs=np.random.randint(0,10,size=(7,100,100,3))

datagen = ImageDataGenerator(
featurewise_center=True,
featurewise_std_normalization=True,
rotation_range=20,
width_shift_range=0.2,
height_shift_range=0.2,
horizontal_flip=True)

f=datagen.flow(imgs,[0,1,2,3,4,5,6],batch_size=3)

# print(f.next()[1])
# time.sleep(2)
# print(f.next()[1])
# time.sleep(2)
# print(f.next()[1])

for index,(x,y) in enumerate(f):
if index==10:
break
time.sleep(1)
print(x.shape,y)

输出结果:

(3, 100, 100, 3) [5 0 6]
(3, 100, 100, 3) [3 2 1]
(1, 100, 100, 3) [4]
(3, 100, 100, 3) [6 0 4]
(3, 100, 100, 3) [1 2 3]
(1, 100, 100, 3) [5]
(3, 100, 100, 3) [6 1 0]
(3, 100, 100, 3) [4 5 2]
(1, 100, 100, 3) [3]
(3, 100, 100, 3) [3 2 1]

分析可得,​​ImageDataGenerator​​​对象的flow方法,对输入数据​​(imgs,ylabel)​​打乱(默认参数,可设置)后,依次取batch_size的图片并逐一进行变换。取完后再循环。伪代码如下:

while(True):
if shuffle==True:
shuffle(x,y)#打乱
for i in range(0,len(x),batch_size):
x_batch=x[i:i+batch_size]
y_batch=y[i:i+batch_size]
ImagePro(x_batch)#数据增强
saveToFile()#保存提升后的图片
yield (x_batch,y_batch)

源码参考:​​/Lib/site-packages/keras/preprocessing/image.py​


举报

相关推荐

0 条评论