0
点赞
收藏
分享

微信扫一扫

keras DCGAN

搬砖的小木匠 2022-10-27 阅读 44


训练结果:

keras DCGAN_ide

keras DCGAN_ide_02

代码:
代码基于 eriklindernoren/Keras-GAN ,并修改了​​​trainable与compile​​ 易于混淆的代码。

from keras.datasets import mnist
from keras.layers import Input, Dense, Reshape, Flatten, Dropout
from keras.layers import BatchNormalization, Activation, ZeroPadding2D
from keras.layers.advanced_activations import LeakyReLU
from keras.layers.convolutional import UpSampling2D, Conv2D
from keras.models import Sequential, Model
from keras.optimizers import Adam
import matplotlib.pyplot as plt
import numpy as np


class DCGAN():
def __init__(self):
# Input shape
self.img_rows = 28
self.img_cols = 28
self.channels = 1
self.img_shape = (self.img_rows, self.img_cols, self.channels)
self.latent_dim = 100

optimizer = Adam(0.0002, 0.5)

base_generator = self.build_generator()
base_discriminator = self.build_discriminator()
########
self.generator = Model(
inputs=base_generator.inputs,
outputs=base_generator.outputs)

self.discriminator = Model(
inputs=base_discriminator.inputs,
outputs=base_discriminator.outputs)
self.discriminator.compile(loss='binary_crossentropy',
optimizer=optimizer,
metrics=['accuracy'])

frozen_D = Model(
inputs=base_discriminator.inputs,
outputs=base_discriminator.outputs)
frozen_D.trainable = False
z = Input(shape=(self.latent_dim,))
img = self.generator(z)
valid = frozen_D(img)
self.combined = Model(z, valid)
self.combined.compile(loss='binary_crossentropy', optimizer=optimizer)

def build_generator(self):

model = Sequential()

model.add(
Dense(
128 * 7 * 7,
activation="relu",
input_dim=self.latent_dim))
model.add(Reshape((7, 7, 128)))
model.add(UpSampling2D())
model.add(Conv2D(128, kernel_size=3, padding="same"))
model.add(BatchNormalization(momentum=0.8))
model.add(Activation("relu"))
model.add(UpSampling2D())
model.add(Conv2D(64, kernel_size=3, padding="same"))
model.add(BatchNormalization(momentum=0.8))
model.add(Activation("relu"))
model.add(Conv2D(self.channels, kernel_size=3, padding="same"))
model.add(Activation("tanh"))

model.summary()

return model

def build_discriminator(self):

model = Sequential()

model.add(
Conv2D(
32,
kernel_size=3,
strides=2,
input_shape=self.img_shape,
padding="same"))
model.add(LeakyReLU(alpha=0.2))
model.add(Dropout(0.25))
model.add(Conv2D(64, kernel_size=3, strides=2, padding="same"))
model.add(ZeroPadding2D(padding=((0, 1), (0, 1))))
model.add(BatchNormalization(momentum=0.8))
model.add(LeakyReLU(alpha=0.2))
model.add(Dropout(0.25))
model.add(Conv2D(128, kernel_size=3, strides=2, padding="same"))
model.add(BatchNormalization(momentum=0.8))
model.add(LeakyReLU(alpha=0.2))
model.add(Dropout(0.25))
model.add(Conv2D(256, kernel_size=3, strides=1, padding="same"))
model.add(BatchNormalization(momentum=0.8))
model.add(LeakyReLU(alpha=0.2))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(1, activation='sigmoid'))

model.summary()

return model

def train(self, epochs, batch_size, save_interval, log_interval):

# Load the dataset
(X_train, _), (_, _) = mnist.load_data()

# Rescale -1 to 1
X_train = X_train / 127.5 - 1.
X_train = np.expand_dims(X_train, axis=3)

# Adversarial ground truths
valid = np.ones((batch_size, 1))
fake = np.zeros((batch_size, 1))

logs = []

for epoch in range(epochs):

# ---------------------
# Train Discriminator
# ---------------------

# Select a random half of images
idx = np.random.randint(0, X_train.shape[0], batch_size)
imgs = X_train[idx]

# Sample noise and generate a batch of new images
noise = np.random.normal(0, 1, (batch_size, self.latent_dim))
gen_imgs = self.generator.predict(noise)

# Train the discriminator (real classified as ones and generated as
# zeros)
d_loss_real = self.discriminator.train_on_batch(imgs, valid)
d_loss_fake = self.discriminator.train_on_batch(gen_imgs, fake)
d_loss = 0.5 * np.add(d_loss_real, d_loss_fake)

# ---------------------
# Train Generator
# ---------------------

# Train the generator (wants discriminator to mistake images as
# real)
g_loss = self.combined.train_on_batch(noise, valid)

if epoch % log_interval == 0:
logs.append([epoch, d_loss[0], d_loss[1], g_loss])

if epoch % save_interval == 0:
print("%d [D loss: %f, acc.: %.2f%%] [G loss: %f]" %
(epoch, d_loss[0], 100 * d_loss[1], g_loss))
self.save_imgs(epoch)
self.showlogs(logs)

def showlogs(self, logs):
logs = np.array(logs)
names = ["d_loss", "d_acc", "g_loss"]
for i in range(3):
plt.subplot(2, 2, i + 1)
plt.plot(logs[:, 0], logs[:, i + 1])
plt.xlabel("epoch")
plt.ylabel(names[i])
plt.tight_layout()
plt.show()

def save_imgs(self, epoch):
r, c = 5, 5
noise = np.random.normal(0, 1, (r * c, self.latent_dim))
gen_imgs = self.generator.predict(noise)

# Rescale images 0 - 1
gen_imgs = 0.5 * gen_imgs + 0.5

fig, axs = plt.subplots(r, c)
cnt = 0
for i in range(r):
for j in range(c):
axs[i, j].imshow(gen_imgs[cnt, :, :, 0], cmap='gray')
axs[i, j].axis('off')
cnt += 1
fig.savefig("images/mnist_%d.png" % epoch)
plt.close()


if __name__ == '__main__':
dcgan = DCGAN()
dcgan.train(epochs=4000, batch_size=32, save_interval=50, log_interval=10)


举报

相关推荐

0 条评论