0
点赞
收藏
分享

微信扫一扫

分布式--BASE理论



简介

        本文介绍分布式中的BASE理论。

        对于业务系统而言,我们往往选择牺牲一致性来换取系统的可用性和分区容错性。不过这里要指出的是,所谓的“牺牲一致性”并不是完全放弃数据一致性,而是牺牲强一致性换取弱一致性

        Base理论:基本可用(Basically Available),软状态(Soft State),最终一致性(Eventually Consistent)

Basic Available 

        假设系统,出现了不可预知的故障,但还是能用,相比较正常的系统而言有以下处损失:


  • 响应时间上的损失:示例:正常情况下的搜索引擎0.5秒即返回给用户结果,而基本可用的搜索引擎可以在2秒作用返回结果。
  • 功能上的损失:示例:在一个电商网站上,正常情况下,用户可以顺利完成每一笔订单。但是到了大促期间,为了保护购物系统的稳定性,部分消费者可能会被引导到一个降级页面。

Soft State

硬状态:相对于原子性而言,要求多个节点的数据副本都是一致的。

软状态:允许系统中的数据存在中间状态,并认为该状态不影响系统的整体可用性,即允许系统在多个不同节点的数据副本存在数据延时。

Eventually Consistent

        上面说软状态,然后不可能一直是软状态,必须有个时间期限。在期限过后,应当保证所有副本保持数据一致性,从而达到数据的最终一致性。这个时间期限取决于网络延时、系统负载、数据复制方案设计等等因素。

在实际工程实践中,最终一致性分为5种:

说明

因果一致性(Causal consistency)

如果节点A在更新完某个数据后通知了节点B,那么节点B之后对该数据的访问和修改都是基于A更新后的值。与此同时,和节点A无因果关系的节点C的数据访问则没有这样的限制。

读己之所写(Read your writes)

节点A更新一个数据后,它自身总是能访问到自身更新过的最新值,而不会看到旧值。其实也算一种因果一致性。

会话一致性(Session consistency)

会话一致性将对系统数据的访问过程框定在了一个会话当中:系统能保证在同一个有效的会话中实现 “读己之所写” 的一致性,也就是说,执行更新操作之后,客户端能够在同一个会话中始终读取到该数据项的最新值。

单调读一致性(Monotonic read consistency)

如果一个节点从系统中读取出一个数据项的某个值后,那么系统对于该节点后续的任何数据访问都不应该返回更旧的值。

单调写一致性(Monotonic write consistency)

一个系统要能够保证来自同一个节点的写操作被顺序的执行。

        在实际的实践中,这5种系统往往会结合使用,以构建一个具有最终一致性的分布式系统。

        实际上,不只是分布式系统使用最终一致性,关系型数据库在某个功能上,也是使用最终一致性的。比如备份,数据库的复制过程是需要时间的,这个复制过程中,业务读取到的值就是旧的。当然,最终还是达成了数据一致性。这也算是一个最终一致性的经典案例。

        ACID能够保证事务的强一致性,即数据是实时一致的。这在本地事务中是没有问题的,在分布式事务中,强一致性会极大影响分布式系统的性能,因此分布式系统中遵循BASE理论即可。

        分布式系统的不同业务场景对一致性的要求也不同。如交易场景下,就要求强一致性,此时就需要遵循ACID理论,而在注册成功后发送短信验证码等场景下,并不需要实时一致,因此遵循BASE理论即可。

        要根据具体业务场景,在ACID和BASE之间寻求平衡

其他网址

《从Paxos到Zookeeper 分布式一致性原理与实践》


举报

相关推荐

0 条评论