1 简介
基于节约算法求解带时效性约束的物流中心选址问题.分析选址问题的时效性约束条件,构造带时效性约束的物流中心选址模型,利用节约算法设计选址模型的精确算法,并给出具体算例,验证模型和算法的可行性.研究结果表明,该算法能够求解带时效性约束的选址模型,又能够求解不带时效性约束的重心选址模型,是一种比传统算法更有效的求解物流中心选址问题的算法.
2 部分代码
clcclear allp1=0.9;customer=xlsread('customer.xlsx'); %需求点信息facility=xlsread('facility.xlsx'); %设施点信息facilityposition=facility(:,2:3); %设施坐标customerposition=customer(:,2:3); %需求点坐标position=[facilityposition;customerposition];xlswrite('position.xlsx',position)position1=[position(:,1) position(:,2)];distMatrix=dists(position1); %计算得出的两点之间的距离xlswrite('distMatrix.xlsx',distMatrix)ttimeu=fix(distMatrix); %两点之间的距离%%%%%%%%%%%%%%%%%%%%%%%%%固定数据%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%Qofcar=200; %车辆容量costofallcar=5000; %车辆固定成本costofunitdistance=9; %单位距离成本tanpaifangyinzi=1; %车辆碳排放因子danweiyouhao=1; %车辆单位油耗%%%%%%%%%%%%%%%%%%%%%%%计算出来的数据%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%Numberofpoints=size(customer,1); %需求点数量Numberoffacilities=size(facility,1); %设施点数量quantity=[customer(:,1) customer(:,4) customer(:,4)]; %需求点需求量Qoffacilities=[facility(:,1) facility(:,4)]; %设施容量timewindow=[customer(:,1) customer(:,6:7)]; %需求点时间窗countfacility=facility(:,5); %建立设施固定成本codeofpicture=1;timewindowassignofpoint=[2 1 2 1 3 3 1 2 1 1 2 3 2];[outcome1,outcome2,outcome3]=cw(Numberoffacilities,assignofpoint,ttimeu,timewindow,distMatrix,quantity,Qofcar,p1);%outcome1=[1 1 2 1 2 3 3 4 4 3 5 5 5];%outcome2=[9 2 10 4 7 13 1 11 8 3 12 5 6];[outcome1,outcome2,outcome3]=tabu(outcome1,outcome2,outcome3,distMatrix,ttimeu,Numberoffacilities,timewindow);[Picture]=picture(codeofpicture,outcome1,outcome2,outcome3,customer,facility);3 仿真结果

4 参考文献
[1]于晓东. 基于人工蜂群算法的考虑碳排放的带时间窗车辆路径问题研究[D]. 大连理工大学, 2016.
博主简介:擅长智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,相关matlab代码问题可私信交流。
部分理论引用网络文献,若有侵权联系博主删除。











