0
点赞
收藏
分享

微信扫一扫

各项工具大pk,分组聚合哪家强?


作者简介:小小明,Pandas数据处理专家,致力于帮助无数数据从业者解决数据处理难题。

大家好,我是小小明。

先看一个小需求:

各项工具大pk,分组聚合哪家强?_python实现

今天呢,我将带大家分别使用MySQL、Excel、Pandas、VBA和Python来实现这个需求,让大家对分组统计代码层面的实现能够更加熟悉。

文章目录

  • ​​MySQL实现分组统计​​
  • ​​Excel实现分组统计​​
  • ​​Pandas进行分组统计​​
  • ​​VBA实现分组统计​​
  • ​​Python实现分组计数​​
  • ​​总结​​

MySQL实现分组统计

sql语句:

SELECT 
deal_date,
SUM(IF(AREA= 'A区', 1, 0)) 'A区',
SUM(IF(AREA= 'B区', 1, 0)) 'B区',
SUM(IF(AREA= 'C区', 1, 0)) 'C区'
FROM
order_info
GROUP BY deal_date ;

结果:

各项工具大pk,分组聚合哪家强?_mysql_02

Excel实现分组统计

首先创建数据透视表:

各项工具大pk,分组聚合哪家强?_数据_03

然后将对应的字段拖动到正确的位置:

各项工具大pk,分组聚合哪家强?_mysql_04

然后打开透视表选项取消这两项勾选即可:

各项工具大pk,分组聚合哪家强?_数据_05

Pandas进行分组统计

读取数据:

import pandas as pd

df = pd.read_csv("data.csv", encoding="gb18030")

结果:

order_id

price

deal_date

area

0

S001

10

2019/1/1

A区

1

S002

20

2019/1/1

B区

2

S003

30

2019/1/1

C区

3

S004

40

2019/1/2

A区

4

S005

10

2019/1/2

B区

5

S006

20

2019/1/2

C区

6

S007

30

2019/1/3

A区

7

S008

40

2019/1/3

C区

使用数据透视表操作:

df.pivot_table(values="order_id", index="deal_date",
columns="area", aggfunc="count", fill_value=0)

上述代码相当于groupby操作:

df.groupby(["deal_date", "area"])["order_id"].count().unstack(1, fill_value=0)

但我一般会这样写:

df.groupby(["deal_date", "area"]).size().unstack(1, fill_value=0)

结果均为:

各项工具大pk,分组聚合哪家强?_mysql_06

VBA实现分组统计

经过近1小时的痛苦的尝试,终于编写出了下面这段VBA代码,它模拟实现了分组计数的过程:

Option Explicit
Function is_exists(name As String)
Dim sht As Worksheet
For Each sht In Worksheets
If sht.name = name Then
is_exists = True
Exit Function
End If
Next
is_exists = False
End Function

Sub ()
Dim LastRow, LastCol As Long
Dim Sh As Worksheet
'Sh指代当前活动页
Set Sh = Sheets("data")
'当前活动页的最后一行
LastRow = Sh.Cells(Rows.Count, 1).End(xlUp).row
'当前活动页的最后一列
LastCol = Sh.Cells(1, Columns.Count).End(xlToLeft).Column
'定义D为字典
Dim D As Object
Set D = CreateObject("Scripting.Dictionary")
Dim row, i As Integer
Dim key, value As String

For i = 2 To LastRow
key = Sh.Cells(i, 3).value
value = Sh.Cells(i, 4).value
'如果在字典里
If Not D.exists(key) Then
D.Add key, Array(0, 0, 0)
End If
row = D(key)
If value = "A区" Then
row(0) = row(0) + 1
ElseIf value = "B区" Then
row(1) = row(1) + 1
ElseIf value = "C区" Then
row(2) = row(2) + 1
End If
D(key) = row
Next
'调试输出字典存储的内容
For Each key In D.keys()
Debug.Print key & "," & Join(D(key), ",")
Next

Dim sht As Worksheet
If is_exists("result") Then
Sheets("result").Delete
End If

'在最后的位置增加一个sheet作为结果表
Sheets.Add After:=Sheets(Sheets.Count)
Set sht = Sheets(Sheets.Count)
sht.name = "result"

'屏幕刷新=false
Application.ScreenUpdating = False
'下面写出数据到结果表中,首先写出标题行
sht.Range("A1").Resize(1, 4) = Application.Transpose(Array("deal_date", "A区", "B区", "C区"))
sht.Range("A2").Resize(D.Count, 1) = Application.Transpose(D.keys)
i = 2
For Each row In D.items()
sht.Cells(i, 2).Resize(1, 3) = row
i = i + 1
Next
Application.ScreenUpdating = True

End Sub

运行前:

各项工具大pk,分组聚合哪家强?_数据_07

点击按钮运行后:

各项工具大pk,分组聚合哪家强?_python实现_08

立即窗口和工作表都看到了正确的结果输出,立即窗口看到重复2次的输出是因为我连续运行了两次。

Python实现分组计数

实现代码:

import csv
from collections import namedtuple

result = {}
columns = ["A区", "B区", "C区"]
areas_map = dict(zip(columns, range(len(columns))))
with open("data.csv", encoding="gb18030") as f:
f_csv = csv.reader(f)
headers = next(f_csv)
resultSet = namedtuple("resultSet", headers)
for r in f_csv:
row = resultSet(*r)
areas = result.setdefault(row.deal_date, [0, 0, 0])
areas[areas_map[row.area]] += 1

结果:

{'2019/1/1': [1, 1, 1], '2019/1/2': [1, 1, 1], '2019/1/3': [1, 0, 1]}

借助Pandas转换为表结构方便查看:

pd.DataFrame.from_dict(result, 'index', columns=["A区", "B区", "C区"])

结果:

A区

B区

C区

2019/1/1

1

1

1

2019/1/2

1

1

1

2019/1/3

1

0

1

下面用Python模拟一下Pandas数据透视表实现分组统计的过程:

import csv
from collections import namedtuple, Counter

result = Counter()
with open("data.csv", encoding="gb18030") as f:
f_csv = csv.reader(f)
headers = next(f_csv)
resultSet = namedtuple("resultSet", headers)
for r in f_csv:
row = resultSet(*r)
result[(row.deal_date, row.area)] += 1

结果:

Counter({('2019/1/1', 'A区'): 1,
('2019/1/1', 'B区'): 1,
('2019/1/1', 'C区'): 1,
('2019/1/2', 'A区'): 1,
('2019/1/2', 'B区'): 1,
('2019/1/2', 'C区'): 1,
('2019/1/3', 'A区'): 1,
('2019/1/3', 'C区'): 1})

第二步Pandas还需再对这个结果进行重塑才得到最终所需要的结果,具体重塑的过程实际实现较为复杂,但可以借助category的Series模拟实现一下:

indexs = result.keys()
index = pd.Series(map(lambda x: x[0], indexs), dtype='category')
columns = pd.Series(map(lambda x: x[1], indexs), dtype='category')
values = result.values()

data = np.zeros((len(index.cat.categories), len(columns.cat.categories)))
for x, y, v in zip(index.cat.codes, columns.cat.codes, values):
data[x, y] = v
result = pd.DataFrame(data, index=index.cat.categories,
columns=columns.cat.categories, dtype='int8')

结果:

A区

B区

C区

2019/1/1

1

1

1

2019/1/2

1

1

1

2019/1/3

1

0

1

总结

其实不管用什么语言和工具,分组聚合统计的核心原理都是:

各项工具大pk,分组聚合哪家强?_mysql_09

今天我给大家同时演示了MySQL、Excel、Pandas、VBA和Python实现分组聚合,通过对比,或许读者能自己总结出各项工具的优劣和适用场景,欢迎你在下方评论区留言或评论,发表你的看法,给大家分享和互动。


举报

相关推荐

0 条评论