0
点赞
收藏
分享

微信扫一扫

faiss向量练习

Alex富贵 2022-02-23 阅读 56

     Faiss的全称是Facebook AI Similarity Search,是FaceBook的AI团队针对大规模相似度检索问题开发的一个工具,使用C++编写,有python接口,对10亿量级的索引可以做到毫秒级检索的性能

安装:install faiss-cpu -c pytorch

第一个例子:

#第一步构建向量
import numpy as np
d = 64                                           # 向量维度
nb = 100000                                      # index向量库的数据量
nq = 10000                                       # 待检索query的数目
np.random.seed(1234)             
xb = np.random.random((nb, d)).astype('float32')
xb[:, 0] += np.arange(nb) / 1000.                # index向量库的向量
xq = np.random.random((nq, d)).astype('float32')
xq[:, 0] += np.arange(nq) / 1000.                # 待检索的query向量
#第二步,构建索引,这里我们选用暴力检索的方法FlatL2,L2代表构建的index采用的相似度度量方法为L2范数,即欧氏距离:
import faiss          
index = faiss.IndexFlatL2(d)             
print(index.is_trained)         # 输出为True,代表该类index不需要训练,只需要add向量进去即可
index.add(xb)                   # 将向量库中的向量加入到index中
print(index.ntotal)             # 输出index中包含的向量总数,为100000 
#第三步,检索TopK相似query:
k = 4                     # topK的K值
D, I = index.search(xq, k)# xq为待检索向量,返回的I为每个待检索query最相似TopK的索引list,D为其对应的距离
print(I[:5])
print(D[-5:])

举报

相关推荐

0 条评论