0
点赞
收藏
分享

微信扫一扫

【flink番外篇】9、Flink Table API 支持的操作示例(2)- 通过Table API 和 SQL 创建视图



文章目录

  • Flink 系列文章
  • 一、maven依赖
  • 二、示例:通过Table API 和 SQL 创建视图
  • 1、示例:通过SQL创建视图
  • 2、示例:通过Table API创建视图


本文给出了通过Table API 和SQL 的两种方式创建视图,也就是虚表。同时为了更接近实用,通过Table API 创建了一张Hive的表,然后在该表上创建视图进行示例。


本文除了maven依赖外,没有其他依赖。

本文依赖hive、hadoop、kafka环境好用,代码中示例的hive配置文件路径根据你自己的环境而设置。

一、maven依赖

本文maven依赖参考文章:【flink番外篇】9、Flink Table API 支持的操作示例(1)-通过Table API和SQL创建表 中的依赖,为节省篇幅不再赘述。

二、示例:通过Table API 和 SQL 创建视图

1、示例:通过SQL创建视图

本示例是通过sql创建一个简单的表,然后再通过sql创建一个视图,最后查询视图并输出结果。

import static org.apache.flink.table.api.Expressions.$;
import static org.apache.flink.table.api.Expressions.and;
import static org.apache.flink.table.api.Expressions.lit;
import static org.apache.flink.table.expressions.ApiExpressionUtils.unresolvedCall;

import java.sql.Timestamp;
import java.time.Duration;
import java.util.Arrays;
import java.util.Collections;
import java.util.HashMap;
import java.util.List;

import org.apache.flink.api.common.eventtime.WatermarkStrategy;
import org.apache.flink.api.common.typeinfo.TypeHint;
import org.apache.flink.api.common.typeinfo.TypeInformation;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.api.java.tuple.Tuple3;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.connectors.kafka.table.KafkaConnectorOptions;
import org.apache.flink.table.api.DataTypes;
import org.apache.flink.table.api.EnvironmentSettings;
import org.apache.flink.table.api.Over;
import org.apache.flink.table.api.Schema;
import org.apache.flink.table.api.Table;
import org.apache.flink.table.api.TableDescriptor;
import org.apache.flink.table.api.TableEnvironment;
import org.apache.flink.table.api.Tumble;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;
import org.apache.flink.table.catalog.CatalogDatabaseImpl;
import org.apache.flink.table.catalog.CatalogView;
import org.apache.flink.table.catalog.Column;
import org.apache.flink.table.catalog.ObjectPath;
import org.apache.flink.table.catalog.ResolvedCatalogView;
import org.apache.flink.table.catalog.ResolvedSchema;
import org.apache.flink.table.catalog.hive.HiveCatalog;
import org.apache.flink.table.functions.BuiltInFunctionDefinitions;
import org.apache.flink.types.Row;

import com.google.common.collect.Lists;
/**
 * @author alanchan
 *
 */
public class TestTableAPIDemo {

	/**
	 * @param args
	 * @throws Exception
	 */
	public static void main(String[] args) throws Exception {
		StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
		StreamTableEnvironment tenv = StreamTableEnvironment.create(env);
		// SQL 创建输入表
		String sourceSql = "CREATE TABLE Alan_KafkaTable (\r\n" +
				"  `event_time` TIMESTAMP(3) METADATA FROM 'timestamp',\r\n" +
				"  `partition` BIGINT METADATA VIRTUAL,\r\n" +
				"  `offset` BIGINT METADATA VIRTUAL,\r\n" +
				"  `user_id` BIGINT,\r\n" +
				"  `item_id` BIGINT,\r\n" +
				"  `behavior` STRING\r\n" +
				") WITH (\r\n" +
				"  'connector' = 'kafka',\r\n" +
				"  'topic' = 'user_behavior',\r\n" +
				"  'properties.bootstrap.servers' = '192.168.10.41:9092,192.168.10.42:9092,192.168.10.43:9092',\r\n" +
				"  'properties.group.id' = 'testGroup',\r\n" +
				"  'scan.startup.mode' = 'earliest-offset',\r\n" +
				"  'format' = 'csv'\r\n" +
				");";
		tenv.executeSql(sourceSql);

		//
		String sql = "select user_id , behavior from Alan_KafkaTable group by user_id ,behavior ";
		Table resultQuery = tenv.sqlQuery(sql);
		tenv.createTemporaryView("Alan_KafkaView", resultQuery);

		String queryViewSQL = " select * from Alan_KafkaView ";
		Table queryViewResult = tenv.sqlQuery(queryViewSQL);

		DataStream<Tuple2<Boolean, Row>> resultDS = tenv.toRetractStream(queryViewResult, Row.class);

		// 6、sink
		resultDS.print();

		// 7、执行
		env.execute();
		// kafka中输入测试数据
		// 1,1001,login
		// 1,2001,p_read

		// 程序运行控制台输入如下
		// 3> (true,+I[1, login])
		// 14> (true,+I[1, p_read])
	}
}

2、示例:通过Table API创建视图

本示例是通过Table API创建一个hive的表,将数据写入hive,然后再创建视图,最后查询视图输出。
本示例依赖hive、hadoop、kafka环境好用,代码中示例的hive配置文件路径根据你自己的环境而设置。

import static org.apache.flink.table.api.Expressions.$;
import static org.apache.flink.table.api.Expressions.and;
import static org.apache.flink.table.api.Expressions.lit;
import static org.apache.flink.table.expressions.ApiExpressionUtils.unresolvedCall;

import java.sql.Timestamp;
import java.time.Duration;
import java.util.Arrays;
import java.util.Collections;
import java.util.HashMap;
import java.util.List;

import org.apache.flink.api.common.eventtime.WatermarkStrategy;
import org.apache.flink.api.common.typeinfo.TypeHint;
import org.apache.flink.api.common.typeinfo.TypeInformation;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.api.java.tuple.Tuple3;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.connectors.kafka.table.KafkaConnectorOptions;
import org.apache.flink.table.api.DataTypes;
import org.apache.flink.table.api.EnvironmentSettings;
import org.apache.flink.table.api.Over;
import org.apache.flink.table.api.Schema;
import org.apache.flink.table.api.Table;
import org.apache.flink.table.api.TableDescriptor;
import org.apache.flink.table.api.TableEnvironment;
import org.apache.flink.table.api.Tumble;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;
import org.apache.flink.table.catalog.CatalogDatabaseImpl;
import org.apache.flink.table.catalog.CatalogView;
import org.apache.flink.table.catalog.Column;
import org.apache.flink.table.catalog.ObjectPath;
import org.apache.flink.table.catalog.ResolvedCatalogView;
import org.apache.flink.table.catalog.ResolvedSchema;
import org.apache.flink.table.catalog.hive.HiveCatalog;
import org.apache.flink.table.functions.BuiltInFunctionDefinitions;
import org.apache.flink.types.Row;

import com.google.common.collect.Lists;
/**
 * @author alanchan
 *
 */
public class TestTableAPIDemo {

	/**
	 * @param args
	 * @throws Exception
	 */
	public static void main(String[] args) throws Exception {
		StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
		StreamTableEnvironment tenv = StreamTableEnvironment.create(env);
		// SQL 创建输入表
		String sourceSql = "CREATE TABLE Alan_KafkaTable (\r\n" +
				"  `event_time` TIMESTAMP(3) METADATA FROM 'timestamp',\r\n" +
				"  `partition` BIGINT METADATA VIRTUAL,\r\n" +
				"  `offset` BIGINT METADATA VIRTUAL,\r\n" +
				"  `user_id` BIGINT,\r\n" +
				"  `item_id` BIGINT,\r\n" +
				"  `behavior` STRING\r\n" +
				") WITH (\r\n" +
				"  'connector' = 'kafka',\r\n" +
				"  'topic' = 'user_behavior',\r\n" +
				"  'properties.bootstrap.servers' = '192.168.10.41:9092,192.168.10.42:9092,192.168.10.43:9092',\r\n" +
				"  'properties.group.id' = 'testGroup',\r\n" +
				"  'scan.startup.mode' = 'earliest-offset',\r\n" +
				"  'format' = 'csv'\r\n" +
				");";
		tenv.executeSql(sourceSql);

		// 创建视图
		String catalogName = "alan_hive";
		String defaultDatabase = "default";
		String databaseName = "viewtest_db";
		String hiveConfDir = "/usr/local/bigdata/apache-hive-3.1.2-bin/conf";

		HiveCatalog hiveCatalog = new HiveCatalog(catalogName, defaultDatabase, hiveConfDir);
		tenv.registerCatalog(catalogName, hiveCatalog);
		tenv.useCatalog(catalogName);
		hiveCatalog.createDatabase(databaseName, new CatalogDatabaseImpl(new HashMap(), hiveConfDir) {
		}, true);
		tenv.useDatabase(databaseName);

		String viewName = "Alan_KafkaView";
		String originalQuery = "select user_id , behavior from Alan_KafkaTable group by user_id ,behavior  ";
		String expandedQuery = "SELECT  user_id , behavior FROM " + databaseName + "." + "Alan_KafkaTable  group by user_id ,behavior   ";
		String comment = "this is a comment";
		ObjectPath path = new ObjectPath(databaseName, viewName);

		createView(originalQuery, expandedQuery, comment, hiveCatalog, path);

		// 查询视图
		String queryViewSQL = " select * from Alan_KafkaView ";
		Table queryViewResult = tenv.sqlQuery(queryViewSQL);

		DataStream<Tuple2<Boolean, Row>> resultDS = tenv.toRetractStream(queryViewResult, Row.class);

		// 6、sink
		resultDS.print();

		// 7、执行
		env.execute();
		// kafka中输入测试数据
		// 1,1001,login
		// 1,2001,p_read

		// 程序运行控制台输入如下
		// 3> (true,+I[1, login])
		// 14> (true,+I[1, p_read])

	}
	
	static void createView(String originalQuery, String expandedQuery, String comment, HiveCatalog hiveCatalog, ObjectPath path) throws Exception {
			ResolvedSchema resolvedSchema = new ResolvedSchema(
					Arrays.asList(
							Column.physical("user_id", DataTypes.INT()),
							Column.physical("behavior", DataTypes.STRING())),
					Collections.emptyList(),
					null);
	
			CatalogView origin = CatalogView.of(
					Schema.newBuilder().fromResolvedSchema(resolvedSchema).build(),
					comment,
					originalQuery,
					expandedQuery,
					Collections.emptyMap());
			CatalogView view = new ResolvedCatalogView(origin, resolvedSchema);
			hiveCatalog.createTable(path, view, false);
	
		}

}

以上,本文给出了通过Table API 和SQL 的两种方式创建视图,也就是虚表。同时为了更接近实用,通过Table API 创建了一张Hive的表,然后在该表上创建视图进行示例。


本文更详细的内容可参考文章:

17、Flink 之Table API: Table API 支持的操作(1)

17、Flink 之Table API: Table API 支持的操作(2)


举报

相关推荐

0 条评论