支持按照相同的随机参数对iamge和label进行扩充
1、数据扩充方法
from paddle.vision import transforms
import numpy as np
import random
import time
def setup_seed(seed):
random.seed(seed)
np.random.seed(seed)
class Augmentation:
def __init__(self,image_size):
self.sample_img=Image.fromarray(np.ones((*image_size,3),dtype=np.uint8))
self.jit_color=transforms.ColorJitter(brightness=0.4, contrast=0.4, saturation=0.4, hue=0.4)
self.affine=transforms.Compose([
transforms.RandomRotation(degrees=30),
transforms.RandomHorizontalFlip(),
transforms.RandomVerticalFlip(),
transforms.RandomResizedCrop(image_size)
#transforms.ToTensor(),
#transforms.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225),data_format='HWC')
])
#typelist表示对应的imglist数据的类型,1表示img可以应用对比度饱和