向AI转型的程序员都关注了这个号????????????
机器学习AI算法工程 公众号:datayx
【CVPR 2022 论文开源目录】
- Backbone 
- CLIP 
- GAN 
- NAS 
- NeRF 
- Visual Transformer 
- 视觉和语言(Vision-Language) 
- 自监督学习(Self-supervised Learning) 
- 数据增强(Data Augmentation) 
- 目标检测(Object Detection) 
- 目标跟踪(Visual Tracking) 
- 语义分割(Semantic Segmentation) 
- 实例分割(Instance Segmentation) 
- 小样本分割(Few-Shot Segmentation) 
- 视频理解(Video Understanding) 
- 图像编辑(Image Editing) 
- Low-level Vision 
- 超分辨率(Super-Resolution) 
- 3D点云(3D Point Cloud) 
- 3D目标检测(3D Object Detection) 
- 3D语义分割(3D Semantic Segmentation) 
- 3D目标跟踪(3D Object Tracking) 
- 3D人体姿态估计(3D Human Pose Estimation) 
- 3D语义场景补全(3D Semantic Scene Completion) 
- 3D重建(3D Reconstruction) 
- 伪装物体检测(Camouflaged Object Detection) 
- 深度估计(Depth Estimation) 
- 立体匹配(Stereo Matching) 
- 车道线检测(Lane Detection) 
- 图像修复(Image Inpainting) 
- 人群计数(Crowd Counting) 
- 医学图像(Medical Image) 
- 场景图生成(Scene Graph Generation) 
- 弱监督物体检测(Weakly Supervised Object Localization) 
- 高光谱图像重建(Hyperspectral Image Reconstruction) 
- 水印(Watermarking) 
- 数据集(Datasets) 
- 新任务(New Tasks) 
- 其他(Others) 
Backbone
A ConvNet for the 2020s
- Paper: https://arxiv.org/abs/2201.03545 
- Code: https://github.com/facebookresearch/ConvNeXt 
- 中文解读:https://mp.weixin.qq.com/s/Xg5wPYExnvTqRo6s5-2cAw 
Scaling Up Your Kernels to 31x31: Revisiting Large Kernel Design in CNNs
- Paper: https://arxiv.org/abs/2203.06717 
- Code: https://github.com/megvii-research/RepLKNet 
- Code2: https://github.com/DingXiaoH/RepLKNet-pytorch 
- 中文解读:https://mp.weixin.qq.com/s/_qXyIQut-JRW6VvsjaQlFg 
MPViT : Multi-Path Vision Transformer for Dense Prediction
- Paper: https://arxiv.org/abs/2112.11010 
- Code: https://github.com/youngwanLEE/MPViT 
- 中文解读: https://mp.weixin.qq.com/s/Q9-crEOz5IYzZaNoq8oXfg 
CLIP
HairCLIP: Design Your Hair by Text and Reference Image
- Paper: https://arxiv.org/abs/2112.05142 
- Code: https://github.com/wty-ustc/HairCLIP 
PointCLIP: Point Cloud Understanding by CLIP
- Paper: https://arxiv.org/abs/2112.02413 
- Code: https://github.com/ZrrSkywalker/PointCLIP 
Blended Diffusion for Text-driven Editing of Natural Images
- Paper: https://arxiv.org/abs/2111.14818 
- Code: https://github.com/omriav/blended-diffusion 
GAN
SemanticStyleGAN: Learning Compositional Generative Priors for Controllable Image Synthesis and Editing
- Homepage: https://semanticstylegan.github.io/ 
- Paper: https://arxiv.org/abs/2112.02236 
- Demo: https://semanticstylegan.github.io/videos/demo.mp4 
Style Transformer for Image Inversion and Editing
- Paper: https://arxiv.org/abs/2203.07932 
- Code: https://github.com/sapphire497/style-transformer 
NAS
β-DARTS: Beta-Decay Regularization for Differentiable Architecture Search
- Paper: https://arxiv.org/abs/2203.01665 
- Code: https://github.com/Sunshine-Ye/Beta-DARTS 
ISNAS-DIP: Image-Specific Neural Architecture Search for Deep Image Prior
- Paper: https://arxiv.org/abs/2111.15362 
- Code: None 
NeRF
Mip-NeRF 360: Unbounded Anti-Aliased Neural Radiance Fields
- Homepage: https://jonbarron.info/mipnerf360/ 
- Paper: https://arxiv.org/abs/2111.12077 
- Demo: https://youtu.be/YStDS2-Ln1s 
Point-NeRF: Point-based Neural Radiance Fields
- Homepage: https://xharlie.github.io/projects/project_sites/pointnerf/ 
- Paper: https://arxiv.org/abs/2201.08845 
- Code: https://github.com/Xharlie/point-nerf 
NeRF in the Dark: High Dynamic Range View Synthesis from Noisy Raw Images
- Paper: https://arxiv.org/abs/2111.13679 
- Homepage: https://bmild.github.io/rawnerf/ 
- Demo: https://www.youtube.com/watch?v=JtBS4KBcKVc 
Urban Radiance Fields
- Homepage: https://urban-radiance-fields.github.io/ 
- Paper: https://arxiv.org/abs/2111.14643 
- Demo: https://youtu.be/qGlq5DZT6uc 
Pix2NeRF: Unsupervised Conditional π-GAN for Single Image to Neural Radiance Fields Translation
- Paper: https://arxiv.org/abs/2202.13162 
- Code: https://github.com/HexagonPrime/Pix2NeRF 
HumanNeRF: Free-viewpoint Rendering of Moving People from Monocular Video
- Homepage: https://grail.cs.washington.edu/projects/humannerf/ 
- Paper: https://arxiv.org/abs/2201.04127 
- Demo: https://youtu.be/GM-RoZEymmw 
Visual Transformer
Backbone
MPViT : Multi-Path Vision Transformer for Dense Prediction
- Paper: https://arxiv.org/abs/2112.11010 
- Code: https://github.com/youngwanLEE/MPViT 
应用(Application)
Language-based Video Editing via Multi-Modal Multi-Level Transformer
- Paper: https://arxiv.org/abs/2104.01122 
- Code: None 
MixSTE: Seq2seq Mixed Spatio-Temporal Encoder for 3D Human Pose Estimation in Video
- Paper: https://arxiv.org/abs/2203.00859 
- Code: None 
Embracing Single Stride 3D Object Detector with Sparse Transformer
- Paper: https://arxiv.org/abs/2112.06375 
- Code: https://github.com/TuSimple/SST 
Multi-class Token Transformer for Weakly Supervised Semantic Segmentation
- Paper: https://arxiv.org/abs/2203.02891 
- Code: https://github.com/xulianuwa/MCTformer 
Spatio-temporal Relation Modeling for Few-shot Action Recognition
- Paper: https://arxiv.org/abs/2112.05132 
- Code: https://github.com/Anirudh257/strm 
Mask-guided Spectral-wise Transformer for Efficient Hyperspectral Image Reconstruction
- Paper: https://arxiv.org/abs/2111.07910 
- Code: https://github.com/caiyuanhao1998/MST 
Point-BERT: Pre-training 3D Point Cloud Transformers with Masked Point Modeling
- Homepage: https://point-bert.ivg-research.xyz/ 
- Paper: https://arxiv.org/abs/2111.14819 
- Code: https://github.com/lulutang0608/Point-BERT 
GroupViT: Semantic Segmentation Emerges from Text Supervision
- Homepage: https://jerryxu.net/GroupViT/ 
- Paper: https://arxiv.org/abs/2202.11094 
- Demo: https://youtu.be/DtJsWIUTW-Y 
Restormer: Efficient Transformer for High-Resolution Image Restoration
- Paper: https://arxiv.org/abs/2111.09881 
- Code: https://github.com/swz30/Restormer 
Splicing ViT Features for Semantic Appearance Transfer
- Homepage: https://splice-vit.github.io/ 
- Paper: https://arxiv.org/abs/2201.00424 
- Code: https://github.com/omerbt/Splice 
Self-supervised Video Transformer
- Homepage: https://kahnchana.github.io/svt/ 
- Paper: https://arxiv.org/abs/2112.01514 
- Code: https://github.com/kahnchana/svt 
Learning Affinity from Attention: End-to-End Weakly-Supervised Semantic Segmentation with Transformers
- Paper: https://arxiv.org/abs/2203.02664 
- Code: https://github.com/rulixiang/afa 
Accelerating DETR Convergence via Semantic-Aligned Matching
- Paper: https://arxiv.org/abs/2203.06883 
- Code: https://github.com/ZhangGongjie/SAM-DETR 
DN-DETR: Accelerate DETR Training by Introducing Query DeNoising
- Paper: https://arxiv.org/abs/2203.01305 
- Code: https://github.com/FengLi-ust/DN-DETR 
- 中文解读: https://mp.weixin.qq.com/s/xdMfZ_L628Ru1d1iaMny0w 
Style Transformer for Image Inversion and Editing
- Paper: https://arxiv.org/abs/2203.07932 
- Code: https://github.com/sapphire497/style-transformer 
MonoDTR: Monocular 3D Object Detection with Depth-Aware Transformer
- Paper: https://arxiv.org/abs/2203.10981 
- Code: https://github.com/kuanchihhuang/MonoDTR 
Mask Transfiner for High-Quality Instance Segmentation
- Paper: https://arxiv.org/abs/2111.13673 
- Code: https://github.com/SysCV/transfiner 
视觉和语言(Vision-Language)
Conditional Prompt Learning for Vision-Language Models
- Paper: https://arxiv.org/abs/2203.05557 
- Code: https://github.com/KaiyangZhou/CoOp 
自监督学习(Self-supervised Learning)
UniVIP: A Unified Framework for Self-Supervised Visual Pre-training
- Paper: https://arxiv.org/abs/2203.06965 
- Code: None 
Crafting Better Contrastive Views for Siamese Representation Learning
- Paper: https://arxiv.org/abs/2202.03278 
- Code: https://github.com/xyupeng/ContrastiveCrop 
- 中文解读:https://mp.weixin.qq.com/s/VTP9D5f7KG9vg30U9kVI2A 
HCSC: Hierarchical Contrastive Selective Coding
- Homepage: https://github.com/gyfastas/HCSC 
- Paper: https://arxiv.org/abs/2202.00455 
- 中文解读: https://mp.weixin.qq.com/s/jkYR8mYp-e645qk8kfPNKQ 
数据增强(Data Augmentation)
TeachAugment: Data Augmentation Optimization Using Teacher Knowledge
- Paper: https://arxiv.org/abs/2202.12513 
- Code: https://github.com/DensoITLab/TeachAugment 
AlignMix: Improving representation by interpolating aligned features
- Paper: https://arxiv.org/abs/2103.15375 
- Code: None 
目标检测(Object Detection)
DN-DETR: Accelerate DETR Training by Introducing Query DeNoising
- Paper: https://arxiv.org/abs/2203.01305 
- Code: https://github.com/FengLi-ust/DN-DETR 
- 中文解读: https://mp.weixin.qq.com/s/xdMfZ_L628Ru1d1iaMny0w 
Accelerating DETR Convergence via Semantic-Aligned Matching
- Paper: https://arxiv.org/abs/2203.06883 
- Code: https://github.com/ZhangGongjie/SAM-DETR 
Localization Distillation for Dense Object Detection
- Paper: https://arxiv.org/abs/2102.12252 
- Code: https://github.com/HikariTJU/LD 
- Code2: https://github.com/HikariTJU/LD 
- 中文解读:https://mp.weixin.qq.com/s/dxss8RjJH283h6IbPCT9vg 
Focal and Global Knowledge Distillation for Detectors
- Paper: https://arxiv.org/abs/2111.11837 
- Code: https://github.com/yzd-v/FGD 
- 中文解读:https://mp.weixin.qq.com/s/yDkreTudC8JL2V2ETsADwQ 
A Dual Weighting Label Assignment Scheme for Object Detection
- Paper: https://arxiv.org/abs/2203.09730 
- Code: https://github.com/strongwolf/DW 
目标跟踪(Visual Tracking)
Correlation-Aware Deep Tracking
- Paper: https://arxiv.org/abs/2203.01666 
- Code: None 
TCTrack: Temporal Contexts for Aerial Tracking
- Paper: https://arxiv.org/abs/2203.01885 
- Code: https://github.com/vision4robotics/TCTrack 
语义分割(Semantic Segmentation)
弱监督语义分割
Class Re-Activation Maps for Weakly-Supervised Semantic Segmentation
- Paper: https://arxiv.org/abs/2203.00962 
- Code: https://github.com/zhaozhengChen/ReCAM 
Multi-class Token Transformer for Weakly Supervised Semantic Segmentation
- Paper: https://arxiv.org/abs/2203.02891 
- Code: https://github.com/xulianuwa/MCTformer 
Learning Affinity from Attention: End-to-End Weakly-Supervised Semantic Segmentation with Transformers
- Paper: https://arxiv.org/abs/2203.02664 
- Code: https://github.com/rulixiang/afa 
半监督语义分割
ST++: Make Self-training Work Better for Semi-supervised Semantic Segmentation
- Paper: https://arxiv.org/abs/2106.05095 
- Code: https://github.com/LiheYoung/ST-PlusPlus 
- 中文解读:https://mp.weixin.qq.com/s/knSnlebdtEnmrkChGM_0CA 
Semi-Supervised Semantic Segmentation Using Unreliable Pseudo-Labels
- Homepage: https://haochen-wang409.github.io/U2PL/ 
- Paper: https://arxiv.org/abs/2203.03884 
- Code: https://github.com/Haochen-Wang409/U2PL 
- 中文解读: https://mp.weixin.qq.com/s/-08olqE7np8A1XQzt6HAgQ 
无监督语义分割
GroupViT: Semantic Segmentation Emerges from Text Supervision
- Homepage: https://jerryxu.net/GroupViT/ 
- Paper: https://arxiv.org/abs/2202.11094 
- Demo: https://youtu.be/DtJsWIUTW-Y 
实例分割(Instance Segmentation)
E2EC: An End-to-End Contour-based Method for High-Quality High-Speed Instance Segmentation
- Paper: https://arxiv.org/abs/2203.04074 
- Code: https://github.com/zhang-tao-whu/e2ec 
Mask Transfiner for High-Quality Instance Segmentation
- Paper: https://arxiv.org/abs/2111.13673 
- Code: https://github.com/SysCV/transfiner 
自监督实例分割
FreeSOLO: Learning to Segment Objects without Annotations
- Paper: https://arxiv.org/abs/2202.12181 
- Code: None 
视频实例分割
Efficient Video Instance Segmentation via Tracklet Query and Proposal
- Homepage: https://jialianwu.com/projects/EfficientVIS.html 
- Paper: https://arxiv.org/abs/2203.01853 
- Demo: https://youtu.be/sSPMzgtMKCE 
小样本分割(Few-Shot Segmentation)
Learning What Not to Segment: A New Perspective on Few-Shot Segmentation
- Paper: https://arxiv.org/abs/2203.07615 
- Code: https://github.com/chunbolang/BAM 
视频理解(Video Understanding)
Self-supervised Video Transformer
- Homepage: https://kahnchana.github.io/svt/ 
- Paper: https://arxiv.org/abs/2112.01514 
- Code: https://github.com/kahnchana/svt 
行为识别(Action Recognition)
Spatio-temporal Relation Modeling for Few-shot Action Recognition
- Paper: https://arxiv.org/abs/2112.05132 
- Code: https://github.com/Anirudh257/strm 
动作检测(Action Detection)
End-to-End Semi-Supervised Learning for Video Action Detection
- Paper: https://arxiv.org/abs/2203.04251 
- Code: None 
图像编辑(Image Editing)
Style Transformer for Image Inversion and Editing
- Paper: https://arxiv.org/abs/2203.07932 
- Code: https://github.com/sapphire497/style-transformer 
Blended Diffusion for Text-driven Editing of Natural Images
- Paper: https://arxiv.org/abs/2111.14818 
- Code: https://github.com/omriav/blended-diffusion 
SemanticStyleGAN: Learning Compositional Generative Priors for Controllable Image Synthesis and Editing
- Homepage: https://semanticstylegan.github.io/ 
- Paper: https://arxiv.org/abs/2112.02236 
- Demo: https://semanticstylegan.github.io/videos/demo.mp4 
Low-level Vision
ISNAS-DIP: Image-Specific Neural Architecture Search for Deep Image Prior
- Paper: https://arxiv.org/abs/2111.15362 
- Code: None 
Restormer: Efficient Transformer for High-Resolution Image Restoration
- Paper: https://arxiv.org/abs/2111.09881 
- Code: https://github.com/swz30/Restormer 
超分辨率(Super-Resolution)
图像超分辨率(Image Super-Resolution)
Learning the Degradation Distribution for Blind Image Super-Resolution
- Paper: https://arxiv.org/abs/2203.04962 
- Code: https://github.com/greatlog/UnpairedSR 
视频超分辨率(Video Super-Resolution)
BasicVSR++: Improving Video Super-Resolution with Enhanced Propagation and Alignment
- Paper: https://arxiv.org/abs/2104.13371 
- Code: https://github.com/open-mmlab/mmediting 
- Code: https://github.com/ckkelvinchan/BasicVSR_PlusPlus 
- 中文解读:https://mp.weixin.qq.com/s/HZTwYfphixyLHxlbCAxx4g 
3D点云(3D Point Cloud)
Point-BERT: Pre-training 3D Point Cloud Transformers with Masked Point Modeling
- Homepage: https://point-bert.ivg-research.xyz/ 
- Paper: https://arxiv.org/abs/2111.14819 
- Code: https://github.com/lulutang0608/Point-BERT 
A Unified Query-based Paradigm for Point Cloud Understanding
- Paper: https://arxiv.org/abs/2203.01252 
- Code: None 
CrossPoint: Self-Supervised Cross-Modal Contrastive Learning for 3D Point Cloud Understanding
- Paper: https://arxiv.org/abs/2203.00680 
- Code: https://github.com/MohamedAfham/CrossPoint 
PointCLIP: Point Cloud Understanding by CLIP
- Paper: https://arxiv.org/abs/2112.02413 
- Code: https://github.com/ZrrSkywalker/PointCLIP 
3D目标检测(3D Object Detection)
Embracing Single Stride 3D Object Detector with Sparse Transformer
- Paper: https://arxiv.org/abs/2112.06375 
- Code: https://github.com/TuSimple/SST 
Canonical Voting: Towards Robust Oriented Bounding Box Detection in 3D Scenes
- Paper: https://arxiv.org/abs/2011.12001 
- Code: https://github.com/qq456cvb/CanonicalVoting 
MonoDTR: Monocular 3D Object Detection with Depth-Aware Transformer
- Paper: https://arxiv.org/abs/2203.10981 
- Code: https://github.com/kuanchihhuang/MonoDTR 
3D语义分割(3D Semantic Segmentation)
Scribble-Supervised LiDAR Semantic Segmentation
- Paper: https://arxiv.org/abs/2203.08537 
- Dataset: https://github.com/ouenal/scribblekitti 
3D目标跟踪(3D Object Tracking)
Beyond 3D Siamese Tracking: A Motion-Centric Paradigm for 3D Single Object Tracking in Point Clouds
- Paper: https://arxiv.org/abs/2203.01730 
- Code: https://github.com/Ghostish/Open3DSOT 
3D人体姿态估计(3D Human Pose Estimation)
MHFormer: Multi-Hypothesis Transformer for 3D Human Pose Estimation
- Paper: https://arxiv.org/abs/2111.12707 
- Code: https://github.com/Vegetebird/MHFormer 
- 中文解读: https://zhuanlan.zhihu.com/p/439459426 
MixSTE: Seq2seq Mixed Spatio-Temporal Encoder for 3D Human Pose Estimation in Video
- Paper: https://arxiv.org/abs/2203.00859 
- Code: None 
3D语义场景补全(3D Semantic Scene Completion)
MonoScene: Monocular 3D Semantic Scene Completion
- Paper: https://arxiv.org/abs/2112.00726 
- Code: https://github.com/cv-rits/MonoScene 
3D重建(3D Reconstruction)
BANMo: Building Animatable 3D Neural Models from Many Casual Videos
- Homepage: https://banmo-www.github.io/ 
- Paper: https://arxiv.org/abs/2112.12761 
- Code: https://github.com/facebookresearch/banmo 
- 中文解读:https://mp.weixin.qq.com/s/NMHP8-xWwrX40vpGx55Qew 
伪装物体检测(Camouflaged Object Detection)
Zoom In and Out: A Mixed-scale Triplet Network for Camouflaged Object Detection
- Paper: https://arxiv.org/abs/2203.02688 
- Code: https://github.com/lartpang/ZoomNet 
深度估计(Depth Estimation)
单目深度估计
NeW CRFs: Neural Window Fully-connected CRFs for Monocular Depth Estimation
- Paper: https://arxiv.org/abs/2203.01502 
- Code: None 
OmniFusion: 360 Monocular Depth Estimation via Geometry-Aware Fusion
- Paper: https://arxiv.org/abs/2203.00838 
- Code: None 
Toward Practical Self-Supervised Monocular Indoor Depth Estimation
- Paper: https://arxiv.org/abs/2112.02306 
- Code: None 
立体匹配(Stereo Matching)
ACVNet: Attention Concatenation Volume for Accurate and Efficient Stereo Matching
- Paper: https://arxiv.org/abs/2203.02146 
- Code: https://github.com/gangweiX/ACVNet 
车道线检测(Lane Detection)
Rethinking Efficient Lane Detection via Curve Modeling
- Paper: https://arxiv.org/abs/2203.02431 
- Code: https://github.com/voldemortX/pytorch-auto-drive 
- Demo:https://user-images.githubusercontent.com/32259501/148680744-a18793cd-f437-461f-8c3a-b909c9931709.mp4 
图像修复(Image Inpainting)
Incremental Transformer Structure Enhanced Image Inpainting with Masking Positional Encoding
- Paper: https://arxiv.org/abs/2203.00867 
- Code: https://github.com/DQiaole/ZITS_inpainting 
人群计数(Crowd Counting)
Leveraging Self-Supervision for Cross-Domain Crowd Counting
- Paper: https://arxiv.org/abs/2103.16291 
- Code: None 
医学图像(Medical Image)
BoostMIS: Boosting Medical Image Semi-supervised Learning with Adaptive Pseudo Labeling and Informative Active Annotation
- Paper: https://arxiv.org/abs/2203.02533 
- Code: None 
场景图生成(Scene Graph Generation)
SGTR: End-to-end Scene Graph Generation with Transformer
- Paper: https://arxiv.org/abs/2112.12970 
- Code: None 
风格迁移(Style Transfer)
StyleMesh: Style Transfer for Indoor 3D Scene Reconstructions
- Homepage: https://lukashoel.github.io/stylemesh/ 
- Paper: https://arxiv.org/abs/2112.01530 
- Code: https://github.com/lukasHoel/stylemesh 
- Demo:https://www.youtube.com/watch?v=ZqgiTLcNcks 
弱监督物体检测(Weakly Supervised Object Localization)
Weakly Supervised Object Localization as Domain Adaption
- Paper: https://arxiv.org/abs/2203.01714 
- Code: https://github.com/zh460045050/DA-WSOL_CVPR2022 
高光谱图像重建(Hyperspectral Image Reconstruction)
Mask-guided Spectral-wise Transformer for Efficient Hyperspectral Image Reconstruction
- Paper: https://arxiv.org/abs/2111.07910 
- Code: https://github.com/caiyuanhao1998/MST 
水印(Watermarking)
Deep 3D-to-2D Watermarking: Embedding Messages in 3D Meshes and Extracting Them from 2D Renderings
- Paper: https://arxiv.org/abs/2104.13450 
- Code: None 
数据集(Datasets)
It's About Time: Analog Clock Reading in the Wild
- Homepage: https://charigyang.github.io/abouttime/ 
- Paper: https://arxiv.org/abs/2111.09162 
- Code: https://github.com/charigyang/itsabouttime 
- Demo: https://youtu.be/cbiMACA6dRc 
Toward Practical Self-Supervised Monocular Indoor Depth Estimation
- Paper: https://arxiv.org/abs/2112.02306 
- Code: None 
Kubric: A scalable dataset generator
- Paper: https://arxiv.org/abs/2203.03570 
- Code: https://github.com/google-research/kubric 
Scribble-Supervised LiDAR Semantic Segmentation
- Paper: https://arxiv.org/abs/2203.08537 
- Dataset: https://github.com/ouenal/scribblekitti 
新任务(New Task)
Language-based Video Editing via Multi-Modal Multi-Level Transformer
- Paper: https://arxiv.org/abs/2104.01122 
- Code: None 
It's About Time: Analog Clock Reading in the Wild
- Homepage: https://charigyang.github.io/abouttime/ 
- Paper: https://arxiv.org/abs/2111.09162 
- Code: https://github.com/charigyang/itsabouttime 
- Demo: https://youtu.be/cbiMACA6dRc 
Splicing ViT Features for Semantic Appearance Transfer
- Homepage: https://splice-vit.github.io/ 
- Paper: https://arxiv.org/abs/2201.00424 
- Code: https://github.com/omerbt/Splice 
其他(Others)
Kubric: A scalable dataset generator
- Paper: https://arxiv.org/abs/2203.03570 
- Code: https://github.com/google-research/kubric 
机器学习算法AI大数据技术
 搜索公众号添加: datanlp
长按图片,识别二维码
不断更新资源
深度学习、机器学习、数据分析、python
 搜索公众号添加: datayx 











