0
点赞
收藏
分享

微信扫一扫

答应我,别在CDH5中使用ORC好吗

温馨提示:如果使用电脑查看图片不清晰,可以使用手机打开文章单击文中的图片放大查看高清原图。


Fayson的github:

​​https://github.com/fayson/cdhproject​​


提示:代码块部分可以左右滑动查看噢


1

问题重现



当我们在使用ORC文件格式创建Hive表,并且对Hive表的schema进行更改后,然后进行如insert into…select或insert overwrite … select会报错,以下具体看看报错。


1.首先我们创建一张ORC格式的Hive表,从插入一行数据。


CREATE TABLE orc_test(
s1 date,
s2 string,
s3 string
)
STORED AS ORC
LOCATION '/fayson/orc_test';

insert into orc_test values('2015-12-18','25','11111');
select * from orc_test;

(可左右滑动)


答应我,别在CDH5中使用ORC好吗_hadoop


2.我们先使用alter命令增加一列到该表,然后对该表进行insert操作。


ALTER TABLE  orc_test ADD COLUMNS (testing string);
INSERT overwrite table orc_test SELECT * FROM orc_test;
INSERT into table orc_test SELECT * FROM orc_test;

(可左右滑动)


答应我,别在CDH5中使用ORC好吗_hive_02


3.发现无论是insert还是insert overwrite都会报错,如下。


-----
Diagnostic Messages for this Task:
Error: java.lang.RuntimeException: org.apache.hadoop.hive.ql.metadata.HiveException: Hive Runtime Error while processing row
at org.apache.hadoop.hive.ql.exec.mr.ExecMapper.map(ExecMapper.java:179)
at org.apache.hadoop.mapred.MapRunner.run(MapRunner.java:54)
at org.apache.hadoop.mapred.MapTask.runOldMapper(MapTask.java:459)
at org.apache.hadoop.mapred.MapTask.run(MapTask.java:343)
at org.apache.hadoop.mapred.YarnChild$2.run(YarnChild.java:164)
at java.security.AccessController.doPrivileged(Native Method)
at javax.security.auth.Subject.doAs(Subject.java:422)
at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1920)
at org.apache.hadoop.mapred.YarnChild.main(YarnChild.java:158)
Caused by: org.apache.hadoop.hive.ql.metadata.HiveException: Hive Runtime Error while processing row
at org.apache.hadoop.hive.ql.exec.vector.VectorMapOperator.process(VectorMapOperator.java:52)
at org.apache.hadoop.hive.ql.exec.mr.ExecMapper.map(ExecMapper.java:170)
... 8 more
Caused by: java.lang.NullPointerException
at java.lang.System.arraycopy(Native Method)
at org.apache.hadoop.io.Text.set(Text.java:225)
at org.apache.hadoop.hive.ql.exec.vector.expressions.VectorExpressionWriterFactory$6.writeValue(VectorExpressionWriterFactory.java:686)
at org.apache.hadoop.hive.ql.exec.vector.expressions.VectorExpressionWriterFactory$VectorExpressionWriterBytes.writeValue(VectorExpressionWriterFactory.java:272)
at org.apache.hadoop.hive.ql.exec.vector.VectorFileSinkOperator.getRowObject(VectorFileSinkOperator.java:89)
at org.apache.hadoop.hive.ql.exec.vector.VectorFileSinkOperator.processOp(VectorFileSinkOperator.java:76)
at org.apache.hadoop.hive.ql.exec.Operator.forward(Operator.java:815)
at org.apache.hadoop.hive.ql.exec.vector.VectorSelectOperator.processOp(VectorSelectOperator.java:138)
at org.apache.hadoop.hive.ql.exec.Operator.forward(Operator.java:815)
at org.apache.hadoop.hive.ql.exec.TableScanOperator.processOp(TableScanOperator.java:98)
at org.apache.hadoop.hive.ql.exec.MapOperator$MapOpCtx.forward(MapOperator.java:157)
at org.apache.hadoop.hive.ql.exec.vector.VectorMapOperator.process(VectorMapOperator.java:45)
... 9 more


FAILED: Execution Error, return code 2 from org.apache.hadoop.hive.ql.exec.mr.MapRedTask
MapReduce Jobs Launched:
Stage-Stage-1: Map: 1 HDFS Read: 0 HDFS Write: 0 FAIL
Total MapReduce CPU Time Spent: 0 msec

(可左右滑动)


答应我,别在CDH5中使用ORC好吗_hive_03


其实这个异常主要是因为使用ORC格式的文件与Hive的矢量化特性不兼容导致的,本文Fayson会介绍会如何解决这个故障。


  • 测试环境

1.CM和CDH版本为5.15.0

2.采用root用户操作

3.Hive1.1.0


2

问题解决


2.1

方法1:禁用矢量化


1.禁用矢量化后,再次执行同样的insert语句。


set hive.vectorized.execution.enabled=false;
INSERT overwrite table orc_test SELECT * FROM orc_test;
INSERT into table orc_test SELECT * FROM orc_test;

(可左右滑动)


答应我,别在CDH5中使用ORC好吗_hadoop_04


执行成功,没有报错。


2.2

方法2:使用Parquet


1.我们drop掉这张表,同样的操作使用Parquet文件格式再次操作一遍。


CREATE TABLE orc_test(
s1 string,
s2 string,
s3 string
)
STORED AS parquet
LOCATION '/fayson/orc_test';
insert into orc_test values('2015-12-18','25','11111');
ALTER TABLE orc_test ADD COLUMNS (testing string);
INSERT overwrite table orc_test SELECT * FROM orc_test;

INSERT into table orc_test SELECT * FROM orc_test;

(可左右滑动)


答应我,别在CDH5中使用ORC好吗_hive_05

答应我,别在CDH5中使用ORC好吗_hive_06

执行成功,没有报错。


3

总结


1.hive.vectorized.execution.enabled参数在CDH5的Hive中默认是开启的,矢量查询(Vectorized query) 每次处理数据时会将1024行数据组成一个batch进行处理,而不是一行一行进行处理,这样能够显著提高执行速度。


2.但当该参数开启后,会与ORC格式文件的Hive表冲突,也会导致本文第一章所描述的报错,该jira是在Hive2才修复的,所以要在CDH6中才会修复,具体参考一个非常大的jira包:

​​https://issues.apache.org/jira/browse/HIVE-11981​​

​​https://issues.apache.org/jira/browse/HIVE-16314​​


3.要解决该bug导致的问题,可以禁用矢量化查询的功能,即:set hive.vectorized.execution.enabled=false或者不要对于Hive表使用ORC格式,而是统一改为Parquet格式。


4.ORC文件格式的事务支持尚不完善,具体参考《​​Hive事务管理避坑指南​​》,所以在CDH中的Hive中使用ORC格式是不建议的,另外Cloudera Impala也不支持ORC格式,如果你在Hive中创建ORC格式的表,也没办法达到一份数据,多个计算引擎同时访问的目的。最后其实ORC格式是Hortonworks家的,Parquet才是Cloudera的,从两家产品竞争关系上讲,也不会互相支持。所以只要你还在玩CDH5,就别再折腾ORC了。



提示:代码块部分可以左右滑动查看噢


为天地立心,为生民立命,为往圣继绝学,为万世开太平。

温馨提示:如果使用电脑查看图片不清晰,可以使用手机打开文章单击文中的图片放大查看高清原图。


推荐关注Hadoop实操,第一时间,分享更多Hadoop干货,欢迎转发和分享。

答应我,别在CDH5中使用ORC好吗_hive_07

原创文章,欢迎转载,转载请注明:转载自微信公众号Hadoop实操



举报

相关推荐

0 条评论