
写在前面:Parity bit Generator/Checker 和 2bit binary comparator 的了解和确认动作。使用Verilog 进行 Parity bit Generator/Checker、2bit binary,实施 comparator,生成输入信号后确认通过模拟器实现的每个 Gate 操作,通过 FPGA 验证 Verilog 实现的电路的行为。
Ⅰ. 前置知识
0x00 Parity bit 生成器
传输二进制信息时使用 parity bit 来检测error。
在发送二进制数据时,增加一个称为 parity bit 的 1-bit 作为发送方法,如果 binary 数据的 1bit 的数目是奇数,则 parity bit 为 1,如果 1bit 的数目是偶数,则 parity bit 为 0。因此,总体上总是具有偶数个 1bit 的传输数据形式,从而将其传输到目的地。

0x01 Parity bit 检查器
在接收器中检查奇偶校验的电路称为奇偶校验器。
奇偶校验校验器的输出用奇偶校验(

)表示,如果1为奇数(如果有错误),则为1;如果1为偶数或0,则 

 为 0。

0x02 2-bit 二进制比较器
当有 2-bit 二进制数 

 时,如果 

 则输出 

 ;如果 

,则输出 

;如果 

,则输出 

 为 1,组合逻辑电路。

Ⅱ. 练习(Assignment)
0x00 实现 Parity bit 生成器
画出卡诺图完成真值表,编写 Verilog 代码,通过 Simulation 打印出结果(8,4,2,1)

真值表:
| In A | In B | In C | In D | Out E | 
| 0 | 0 | 0 | 0 | 0 | 
| 0 | 0 | 0 | 1 | 1 | 
| 0 | 0 | 1 | 0 | 1 | 
| 0 | 0 | 1 | 1 | 0 | 
| 0 | 1 | 0 | 0 | 1 | 
| 0 | 1 | 0 | 1 | 0 | 
| 0 | 1 | 1 | 0 | 0 | 
| 0 | 1 | 1 | 1 | 1 | 
| 1 | 0 | 0 | 0 | 1 | 
| 1 | 0 | 0 | 1 | 0 | 
| 1 | 0 | 1 | 0 | 0 | 
| 1 | 0 | 1 | 1 | 1 | 
| 1 | 1 | 0 | 0 | 0 | 
| 1 | 1 | 0 | 1 | 1 | 
| 1 | 1 | 1 | 0 | 1 | 
| 1 | 1 | 1 | 1 | 0 | 
卡诺图:
| ab cd | 00 | 01 | 11 | 10 | 
| 00 | 0 | 1 | 0 | 1 | 
| 01 | 1 | 0 | 1 | 0 | 
| 11 | 0 | 1 | 0 | 1 | 
| 10 | 1 | 0 | 1 | 0 | 
💬 Design source:
`timescale 1ns / 1ps
module parity_bit_generator(
    input a, b, c, d,
    output e
    );
    
    assign e = a ^ b ^ c ^ d;
endmodule💬 Testbench:
`timescale 1ns / 1ps
module parity_bit_generator_tb;
reg aa, bb, cc, dd;
wire e;
parity_bit_generator u_parity_bit_generator(
   .a(aa),
   .b(bb),
   .c(cc),
   .d(dd),
   .e(e)
   );
initial aa = 1'b0;
initial bb = 1'b0;
initial cc = 1'b0;
initial dd = 1'b0;
       
always aa = #100 ~aa;
always bb = #200 ~bb;
always cc = #400 ~cc;
always dd = #800 ~dd;
       
initial begin
  #1000
  $finish;
end
endmodule🚩 运行结果如下:

0x01 实现 Parity bit 检查器
画出卡诺图完成真值表,编写 Verilog 代码,通过 Simulation 打印出结果(8,4,2,1)

真值表:
| In A | In B | In C | In D | Out E | 
| 0 | 0 | 0 | 0 | 0 | 
| 0 | 0 | 0 | 1 | 1 | 
| 0 | 0 | 1 | 0 | 1 | 
| 0 | 0 | 1 | 1 | 0 | 
| 0 | 1 | 0 | 0 | 1 | 
| 0 | 1 | 0 | 1 | 0 | 
| 0 | 1 | 1 | 0 | 0 | 
| 0 | 1 | 1 | 1 | 1 | 
| 1 | 0 | 0 | 0 | 1 | 
| 1 | 0 | 0 | 1 | 0 | 
| 1 | 0 | 1 | 0 | 0 | 
| 1 | 0 | 1 | 1 | 1 | 
| 1 | 1 | 0 | 0 | 0 | 
| 1 | 1 | 0 | 1 | 1 | 
| 1 | 1 | 1 | 0 | 1 | 
| 1 | 1 | 1 | 1 | 0 | 
卡诺图:
| ab cd | 00 | 01 | 11 | 10 | 
| 00 | 0 | 1 | 0 | 1 | 
| 01 | 1 | 0 | 1 | 0 | 
| 11 | 0 | 1 | 0 | 1 | 
| 10 | 1 | 0 | 1 | 0 | 
💬 Design source:
`timescale 1ns / 1ps
module parity_bit_checker(
    input a,b,c,d,p,
    output e
    );
    
    assign e = a^b^c^d^p;
    
endmodule💬 Testbench:
`timescale 1ns / 1ps
module parity_bit_checker_tb;
reg aa, bb, cc, dd, pp;
wire e;
parity_bit_checker u_parity_bit_checker(
    .a(aa),
    .b(bb),
    .c(cc),
    .d(dd),
    .p(pp),
    .e(e)
    );
initial aa = 1'b0;
initial bb = 1'b0;
initial cc = 1'b0;
initial dd = 1'b0;
initial pp = 1'b0;
         
always aa = #100 ~aa;
always bb = #200 ~bb;
always cc = #400 ~cc;
always dd = #800 ~dd;
always pp = #1600 ~pp;
        
initial begin
   #2000
   $finish;
end
endmodule🚩 运行结果如下:

0x02 实现 2-bit 二进制比较器
画出卡诺图完成真值表,编写 Verilog 代码,通过 Simulation 打印出结果(8,4,2,1)

真值表:
| In A | In B | In C | In D | Out F1 | Out F2 | Out F3 | 
| 0 | 0 | 0 | 0 | 0 | 1 | 0 | 
| 0 | 0 | 0 | 1 | 0 | 0 | 1 | 
| 0 | 0 | 1 | 0 | 0 | 0 | 1 | 
| 0 | 0 | 1 | 1 | 0 | 0 | 1 | 
| 0 | 1 | 0 | 0 | 1 | 0 | 0 | 
| 0 | 1 | 0 | 1 | 0 | 1 | 0 | 
| 0 | 1 | 1 | 0 | 0 | 0 | 1 | 
| 0 | 1 | 1 | 1 | 0 | 0 | 1 | 
| 1 | 0 | 0 | 0 | 1 | 0 | 0 | 
| 1 | 0 | 0 | 1 | 1 | 0 | 0 | 
| 1 | 0 | 1 | 0 | 0 | 1 | 0 | 
| 1 | 0 | 1 | 1 | 0 | 0 | 1 | 
| 1 | 1 | 0 | 0 | 1 | 0 | 0 | 
| 1 | 1 | 0 | 1 | 1 | 0 | 0 | 
| 1 | 1 | 1 | 0 | 1 | 0 | 0 | 
| 1 | 1 | 1 | 1 | 0 | 1 | 0 | 
卡诺图:
A>B
| ab cd | 00 | 01 | 11 | 10 | 
| 00 | 0 | 0 | 0 | 0 | 
| 01 | 1 | 0 | 0 | 0 | 
| 11 | 1 | 1 | 0 | 1 | 
| 10 | 1 | 1 | 0 | 0 | 
A=B
| ab cd | 00 | 01 | 11 | 10 | 
| 00 | 1 | 0 | 0 | 0 | 
| 01 | 0 | 1 | 0 | 0 | 
| 11 | 0 | 0 | 1 | 1 | 
| 10 | 0 | 0 | 0 | 1 | 
A<B
| ab cd | 00 | 01 | 11 | 10 | 
| 00 | 0 | 1 | 1 | 1 | 
| 01 | 0 | 0 | 1 | 1 | 
| 11 | 0 | 0 | 0 | 0 | 
| 10 | 0 | 0 | 1 | 0 | 
💬 Design source:
`timescale 1ns / 1ps
module two_bit_binary_comparator(
    input a, b, c, d,
    output f1, f2, f3
    );
    
    assign f1 = (a & ~c) | (b & ~c & ~d) | (a & b & ~d);
    assign f2 = ~(a ^ c) & ~(b ^ d);
    assign f3 = (~a & c) | (~a & ~b & d) | (~b & c & d);
    
endmodule💬 Testbench:
`timescale 1ns / 1ps
module two_bit_binary_comparator_tb;
 reg aa, bb, cc, dd;
 wire f1, f2, f3;
two_bit_binary_comparator u_two_bit_binary_comparator(
    .a(aa),
    .b(bb),
    .c(cc),
    .d(dd),
    .f1(f1),
    .f2(f2),
    .f3(f3)
    );
    
initial aa = 1'b0;
initial bb = 1'b0;
initial cc = 1'b0;
initial dd = 1'b0;
    
always aa = #100 ~aa;
always bb = #200 ~bb;
always cc = #400 ~cc;
always dd = #800 ~dd;
    
initial begin
   #1000
   $finish;
end
endmodule🚩 运行结果如下:



📌 [ 笔者 ]   王亦优 / akam
📃 [ 更新 ]   2023.2.6
❌ [ 勘误 ]   /* 暂无 */
📜 [ 声明 ]   由于作者水平有限,本文有错误和不准确之处在所难免,
              本人也很想知道这些错误,恳望读者批评指正!| 📜 参考资料 Introduction to Logic and Computer Design, Alan Marcovitz, McGrawHill, 2008 Microsoft. MSDN(Microsoft Developer Network)[EB/OL]. []. . 百度百科[EB/OL]. []. https://baike.baidu.com/. | 










