一、unordered系列关联式容器
在C++98中,STL提供了底层为红黑树结构的一系列关联式容器,在查询时效率可达到log2N,即最差情况下需要比较红黑树的高度次,当树中的节点非常多时,查询效率也不理想。最好的查询是,进行很少的比较次数就能够将元素找到,因此在C++11中,STL又提供了4个unordered系列的关联式容器(unordered_map,unordered_multimap,unordered_set,unordered_multiset),这四个容器与红黑树结构的关联式容器使用方式基本类似,只是其底层结构不同。
unordered_map,unordered_set,他们的思想是哈希底层是哈希表,什么是哈希,哈希是一种思想一种值与值建立映射关系的思想,哈希表则是数据结构,是一种值与存储位置建立的映射关系。
unordered_set与set的不同点:1.对key的要求不同,unordered_set:支持key转换成整数,这里的hash<Key>就是用来不同类型的函数转换成整形的。
set的key要求比较大小,Compare就是底层用来转换比较大小的
2. unordered_set无序,set有序。3.unordered_set单项迭代器,set双向迭代器4.性能差异unordered_set,O(1),set,O(log2N)
二、底层结构
unordered系列的关联式容器之所以效率比较高,是因为其底层使用了哈希结构。
2.1 哈希概念
顺序结构以及平衡树中,元素关键码与其存储位置之间没有对应的关系,因此在查找一个元素
时,必须要经过关键码的多次比较。顺序查找时间复杂度为O(N),平衡树中为树的高度,即
O(log2N),搜索的效率取决于搜索过程中元素的比较次数。
理想的搜索方法:可以不经过任何比较,一次直接从表中得到要搜索的元素。
如果构造一种存储结构,通过某种函数(hashFunc)使元素的存储位置与它的关键码之间能够建立
一一映射的关系,那么在查找时通过该函数可以很快找到该元素。
插入元素
- 根据待插入元素的关键码,以此函数计算出该元素的存储位置并按此位置进行存放
搜索元素
- 对元素的关键码进行同样的计算,把求得的函数值当做元素的存储位置,在结构中按此位置
取元素比较,若关键码相等,则搜索成功
该方式即为哈希(散列)方法,哈希方法中使用的转换函数称为哈希(散列)函数,构造出来的结构称
为哈希表(Hash Table)(或者称散列表)
例如:数据集合{1,7,6,4,5,9};
哈希函数设置为:hash(key) = key % capacity; capacity为存储元素底层空间总的大小。
用该方法进行搜索不必进行多次关键码的比较,因此搜索的速度比较快。
问题:按照上述哈希方式,向集合中插入元素44,会出现什么问题? 若插入44,会发生哈希冲突。
哈希冲突:不同关键字通过相同哈希函数计算出相同的哈希地址,该种现象称为哈希冲突或哈希碰撞。
把具有不同关键码而具有相同哈希地址的数据元素称为“同义词”。
2.2 哈希函数
引起哈希冲突的一个原因可能是:哈希函数设计不够合理。
哈希函数设计原则:
- 哈希函数的定义域必须包括需要存储的全部关键码,而如果散列表允许有m个地址时,其值
域必须在0到m-1之间 - 哈希函数计算出来的地址能均匀分布在整个空间中
- 哈希函数应该比较简单
常见哈希函数
1. 直接定址法
取关键字的某个线性函数为散列地址:Hash(Key)= A*Key + B
优点:简单、均匀
缺点:需要事先知道关键字的分布情况
使用场景:适合查找比较小且连续的情况
2.除留余数法
设散列表中允许的地址数为m,取一个不大于m,但最接近或者等于m的质数p作为除数,
按照哈希函数:Hash(key) = key% p(p<=m),将关键码转换成哈希地址
注意:哈希函数设计的越精妙,产生哈希冲突的可能性就越低,但是无法避免哈希冲突
2.3 哈希冲突解决
哈希冲突解决:闭散列和开散列。
2.3.1 闭散列
闭散列:也叫开放定址法,当发生哈希冲突时,如果哈希表未被装满,说明在哈希表中必然还有
空位置,那么可以把key存放到冲突位置中的“下一个” 空位置中去。那如何寻找下一个空位置
呢?
1. 线性探测
比如2.1中的场景,现在需要插入元素44,先通过哈希函数计算哈希地址,hashAddr为4,因此44理论上应该插在该位置,但是该位置已经放了值为4的元素,即发生哈希冲突。线性探测:从发生冲突的位置开始,依次向后探测,直到寻找到下一个空位置为止。
插入
- 通过哈希函数获取待插入元素在哈希表中的位置
- 如果该位置中没有元素则直接插入新元素,如果该位置中有元素发生哈希冲突,使用线性探测找到下一个空位置,插入新元素
删除
- 采用闭散列处理哈希冲突时,不能随便物理删除哈希表中已有的元素,若直接删除元素会影响其他元素的搜索。比如删除元素4,如果直接删除掉,44查找起来可能会受影响。因此线性探测采用标记的伪删除法来删除一个元素。
代码实现一下闭散列
template<class K> //仿函数用来转换整形
struct HashFunc
{
size_t operator()(const K& key)
{
return (size_t)key;
}
};
template<> //特化,string
struct HashFunc<string>
{
size_t operator()(const string& s) // 字符串相加算出ASCAll,通过ASCAll来当这个字符的映
// 射关系
{
size_t hash = 0;
for (auto e : s)
{
hash *= 31; // 为什么*31?举个例子 "abc" "cba"他们相加后ASCll相加相等但是*31
// 后他们的映射的值不相等,也就是说相加后的ASCll相等但是经历过*31
// 会不相等
hash += e;
}
return hash;
}
};
enum State //这里枚举用来标记
{
EMPTY,
DELETE,
EXIST
};
template<class K, class V>
struct HashData
{
pair<K, V> _kv;
State _state = EMPTY;
};
template<class K, class V, class Hash = HashFunc<K>>
class HashTable
{
public:
HashTable()
{
_tables.resize(10);
}
bool Insert(const pair<K, V>& kv)
{
if (Find(kv.first))
{
return false;
}
//扩容 -- 负载因子---->存储数据的个数/ _tables.size()散列表的长度
if (_n * 10 / _tables.size() >= 7)
{
不能直接扩容,size变了,映射关系就变了
_tables.resize(2 * _tables.size());
HashTable<K, V, Hash> newHT;
newHT._tables.resize(_tables.size() * 2);
for (size_t i = 0; i < _tables.size(); i++)
{
if (_tables[i]._state == EXIST)
{
newHT.Insert(_tables[i]._kv);
}
}
_tables.swap(newHT._tables);
}
Hash hs;
size_t hashi = hs(kv.first) % _tables.size();
while (_tables[hashi]._state == EXIST)
{
++hashi;
hashi %= _tables.size();
}
_tables[hashi]._kv = kv;
_tables[hashi]._state = EXIST;
++_n;
return true;
}
HashData<K, V>* Find(const K& key)
{
Hash hs;
size_t hashi = hs(key) % _tables.size();
while (_tables[hashi]._state != EMPTY)
{
if (_tables[hashi]._state == EXIST
&& _tables[hashi]._kv.first == key)
{
return &_tables[hashi];
}
++hashi;
hashi %= _tables.size();
}
return nullptr;
}
bool Erase(const K& key)
{
HashData<K, V>* ret = Find(key);
if (ret == nullptr)
{
return false;
}
else {
ret->_state = DELETE;
return true;
}
}
private:
vector<HashData<K, V>> _tables;
size_t _n = 0;//表中存储数据个数
};
2.3.2 开散列
开散列法又叫链地址法(开链法),首先对关键码集合用散列函数计算散列地址,具有相同地址的关键码归于同一子集合,每一个子集合称为一个桶,各个桶中的元素通过一个单链表链接起来,各链表的头结点存储在哈希表中。
template<class K, class V>
struct HashNode
{
HashNode(const pair<K,V>& kv)
:_kv(kv)
,_next(nullptr)
{}
pair<K, V> _kv;
HashNode<K, V>* _next = nullptr;
};
template<class K, class V,class Hash = HashFunc<K>>
class HashTable
{
typedef HashNode<K, V> Node;
public:
HashTable()
{
_tables.resize(10, nullptr);
}
~HashTable()
{
// 依次把每个桶释放掉
for (size_t i = 0; i < _tables.size(); i++)
{
Node* cur = _tables[i];
while (cur)
{
Node* next = cur->_next;
delete cur;
cur = next;
}
_tables[i] = nullptr;
}
}
bool Insert(const pair<K, V>& kv)
{
Hash hs;
size_t hashi = hs(kv.first) % _tables.size();
负载因子 == 1 --》负载因子越低空间消耗越低时间越高 --- 效率低
//if (_n == _tables.size())
//{
// // 扩容
// HashTable<K, V> newHT;
// newHT._tables.resize(_tables.size() * 2);
// for (size_t i = 0; i < _tables.size(); i++)
// {
// Node* cur = _tables[i];
// while (cur)
// {
// newHT.Insert(cur->_kv);
// cur = cur->_next;
// }
// }
// _tables.swap(newHT._tables);
//}
// 上面重新插入,开辟新节点。下面是把之前的节点挪到新节点的位置
if (_n == _tables.size())
{
vector<Node*> newtables(_tables.size() * 2, nullptr);
for (size_t i = 0; i < _tables.size(); i++)
{
Node* cur = _tables[i];
while (cur)
{
Node* next = cur->_next;
//旧表中节点,挪动新表重新映射的位置
size_t hashi = hs(cur->_kv.first) % newtables.size();
//头插到新表
cur->_next = newtables[hashi];
newtables[hashi] = cur;
cur = next;
}
_tables[i] = nullptr;
}
_tables.swap(newtables);
}
//头插
Node* newnode = new Node(kv);
newnode->_next = _tables[hashi];
_tables[hashi] = newnode;
++_n;
return true;
}
Node* Find(const K& key)
{
Hash hs;
size_t hashi = hs(key) % _tables.size();
Node* cur = _tables[hashi];
while (cur)
{
if (cur->_kv.first == key)
{
return cur;
}
cur = cur->_next;
}
return nullptr;
}
bool Erase(const K& key)
{
Hash hs;
size_t hashi = hs(key) % _tables.size();
Node* prev = nullptr;
Node* cur = _tables[hashi];
while (cur)
{
if (cur->_kv.first == key)
{
if (prev == nullptr)
{
_tables[hashi] = cur->_next;
}
else
{
prev->_next = cur->_next;
}
delete cur;
--_n;
return true;
}
prev = cur;
cur = cur->_next;
}
return false;
}
private:
vector<Node*> _tables;
size_t _n = 0;
};
应用链地址法处理溢出,需要增设链接指针,似乎增加了存储开销。事实上:由于开地址法必须保持大量的空闲空间以确保搜索效率,如二次探查法要求装载因子a <=0.7,而表项所占空间又比指针大的多,所以使用链地址法反而比开地址法节省存储空间。