MySQL查询导入
import pandas
con = "mysql+pymysql://user:pass@127.0.0.1/test"
sql = "SELECT * FROM `student` WHERE id = 2"
# sql查询
df1 = pandas.read_sql(sql=sql, con=con)
print(df1)
导入mysql整张表
# 整张表
df2 = pandas.read_sql_table(table_name="student", con=con)
print(df2)
遍历数据
# 按列遍历
for key, value in df2.items():
print("Key:", key) # 列名
print("Value:", value) # 列数据
# 按行遍历
for row in df2.itertuples():
print(row) # 命名元组类型
print(row[0], row[1], row[2])
print(row.age)
导出到CSV
# 导出到csv
df2.to_csv(path_or_buf="sql_table.csv", columns=['id', 'name'])
导出到Excel
# 导出到Excel
df2.to_excel(excel_writer="1.xlsx", sheet_name='Sheet_name_1')
导出到Mysql另一张表
# 导入Mysql另一张表
from sqlalchemy import create_engine
engine = create_engine(con, echo=False)
df2.to_sql(name="student1", con=engine, if_exists="append", index=False)
CSV导入:read_csv
import pandas as pd
df = pd.read_csv('myc1.csv')
df
import pandas as pd
df = pd.read_csv('myc1.csv',header=1)
df
import pandas as pd
df = pd.read_csv('myc1.csv',header=3,names=['a','b','c','d','e'])
df
import pandas as pd
df = pd.read_csv('myc1.csv',index_col='单价')
df
import pandas as pd
df = pd.read_csv('myc1.csv',usecols=['水果名','单价'])
df
导入Excel
import pandas
df = pandas.read_excel("1.xlsx", index_col=0, header=0)
print(df)
参考
https://pandas.pydata.org/docs/reference/io.html