1
2 OpenVINO支持的ONNX模型
2-1 支持的公共模型
- bvlc_alexnet , bvlc_googlenet , bvlc_reference_caffenet , bvlc_reference_rcnn_ilsvrc13
- inception_v1, inception_v2
- resnet50
- squeezenet
- densenet121
- emotion_ferplus
- mnist
- shufflenet
- VGG19
- zfnet512
2-2 支持的Pytorch模型
Torchvision Models:
- alexnet,
- densenet121, densenet161, densenet169, densenet201,
- resnet101, resnet152, resnet18, resnet34, resnet50,
- vgg11, vgg13, vgg16, vgg19
Pretrained Models:
- alexnet,
- fbresnet152,
- resnet101, resnet152, resnet18, resnet34, resnet152, resnet18, resnet34, resnet50, resnext101_32x4d, resnext101_64x4d,
- vgg11
2-3 支持的PaddlePaddle模型
- fit_a_line
- recognize_digits
- VGG16
- ResNet
- MobileNet
- SE_ResNeXt
- Inception-v4
3 OpenVINO支持的ONNX层与其在Intermediate Representation (IR)中的对应关系
| NUMBER | OPERATOR NAME IN ONNX* | LAYER TYPE IN THE INTERMEDIATE REPRESENTATION | 
| 1 | Add | Eltwise(operation = sum) (added ‘axis’ support) | 
| 2 | AveragePool | Pooling (pool_method=avg) | 
| 3 | BatchNormalization | ScaleShift (can be fused into Convlution or FC) | 
| 4 | Concat | Concat | 
| 5 | Constant | Will be removed on constant propagation step | 
| 6 | Conv | Convolution | 
| 7 | ConvTranspose | Deconvolution (added auto_pad and output_shape attributes support)) | 
| 8 | Div | Eltwise(operation = mul)->Power | 
| 9 | Dropout | Ignored, does not apeear in IR | 
| 10 | Elu | Activation (ELU) | 
| 11 | Flatten | Reshape | 
| 12 | Gemm | FullyConnected | 
| 13 | GlobalAveragePool | Pooling (pool_method=avg) | 
| 14 | Identity | Ignored, does not appear in IR | 
| 15 | LRN | Norm | 
| 16 | LeakyRelu | ReLU | 
| 17 | MatMul | FullyConnected | 
| 17 | MaxPool | Pooling (pool_method=max) | 
| 19 | Mul | Eltwise(operation = mul) (added ‘axis’ support) | 
| 20 | Relu | ReLU | 
| 21 | Reshape | Reshape | 
| 22 | Shape | Constant propagation | 
| 23 | Softmax | SoftMax | 
| 24 | Squeeze | Reshape | 
| 25 | Sub | Power->Eltwise(operation = sum) | 
| 26 | Sum | Eltwise(operation = sum) | 
| 27 | Transpose | Permute | 
| 28 | Unsqueeze | Reshape | 
| 29 | Upsample | Resample | 
| 30 | ImageScaler | ScaleShift | 
| 31 | Affine | ScaleShift | 
| 32 | Reciprocal | Power(power=-1) | 
| 33 | Crop | Split | 
| 34 | Tanh | Activation (operation = tanh) | 
| 35 | Sigmoid | Activation (operation = sigmoid) | 
| 36 | Pow | Power | 
| 37 | ConvTranspose | |
| 38 | Gather | Constant propagation | 
| 39 | Constant_fill | Constant propagation | 
| 40 | ReduceMean | Reshape + Pooling(pool_method=avg) + Reshape | 
| 41 | ReduceSum | Reshape + Pooling(pool_method=avg) + Power(scale=reduce_dim_size) + Reshape | 
| 42 | Gather | Gather | 
| 43 | Gemm | GEMM | 
| 44 | GlobalMaxPool | Pooling (pool_method=max) | 
| 45 | Neg | Power(scale=-1) | 
| 46 | Pad | Pad | 
| 47 | ArgMax | ArgMax | 
| 48 | Clip | Clamp | 
| 49 | DetectionOutput (experimental) | DetectionOutputONNX | 
| 50 | PriorBox (experimental) | PriorBoxONNX | 
| 51 | RNNSequence | TensorIterator(RNNCell) | 
| 52 | GRUSequence | TensorIterator(GRUCell) | 
| 53 | LSTMSequence | TensorIterator(LSTMCell) | 
参考资料:
 1 Converting a ONNX* Model 
2 Supported Framework Layers
                










