1
2 OpenVINO支持的TENSORFLOW模型
- Inception v1 、 Inception v2、 Inception v3 、Inception V4 、 Inception ResNet v2
 - MobileNet v1 128、 MobileNet v1 160 、MobileNet v1 224
 - NasNet Large 、 NasNet Mobile
 - ResidualNet-50 、ResidualNet-101 、ResidualNet-152
 - VGG-16 、VGG-19
 
3 OpenVINO支持的TENSORFLOW层与其在Intermediate Representation (IR)中的对应关系
NUMBER  | OPERATION NAME IN TENSORFLOW  | LAYER NAME IN THE INTERMEDIATE REPRESENTATION  | 
1  | Transpose  | Permute  | 
2  | LRN  | Norm  | 
3  | Split  | Split  | 
4  | SplitV  | Split  | 
5  | FusedBatchNorm  | ScaleShift (can be fused into Convolution or FullyConnected)  | 
6  | Relu6  | Clamp  | 
7  | DepthwiseConv2dNative  | Convolution  | 
8  | ExpandDims  | Constant propagation  | 
9  | Slice  | Split  | 
10  | ConcatV2  | Concat  | 
11  | MatMul  | FullyConnected  | 
12  | Pack  | Reshapes and Concat  | 
13  | StridedSlice  | Constant propagation and several cases when StridedSlice can be expressed with Splits  | 
14  | Prod  | Constant propagation  | 
15  | Const  | Constant propagation  | 
16  | Tile  | Tile  | 
17  | Placeholder  | Input  | 
18  | Pad  | Fused into Convolution or Pooling layers (not supported as single operation)  | 
19  | Conv2D  | Convolution  | 
20  | Conv2DBackpropInput  | Deconvolution  | 
21  | Identity  | Ignored, does not appear in the IR  | 
22  | Add  | Eltwise(operation = sum)  | 
23  | Mul  | Eltwise(operation = mul)  | 
24  | Maximum  | |
25  | Rsqrt  | Power(power=-0.5)  | 
26  | Neg  | Power(scale=-1)  | 
27  | Sub  | Eltwise(operation = sum) + Power(scale=-1)  | 
28  | Relu  | ReLU  | 
29  | AvgPool  | Pooling (pool_method=avg)  | 
30  | MaxPool  | Pooling (pool_method=max)  | 
31  | Mean  | Pooling (pool_method = avg); spatial dimensions are supported only  | 
32  | RandomUniform  | Not supported  | 
33  | BiasAdd  | Fused or converted to ScaleShift  | 
34  | Reshape  | Reshape  | 
35  | Squeeze  | Reshape  | 
36  | Shape  | Constant propagation (or layer generation if the “–keep_shape_ops” command line parameter has been specified)  | 
37  | Softmax  | SoftMax  | 
38  | SpaceToBatchND  | Supported in a pattern when converted to Convolution layer dilation attribute, Constant propagation  | 
39  | BatchToSpaceND  | Supported in a pattern when converted to Convolution layer dilation attribute, Constant propagation  | 
40  | StopGradient  | |
41  | Square Constant propagation  | |
42  | Sum  | Pool(pool_method = avg) + Eltwise(operation = mul)  | 
43  | Range  | Constant propagation  | 
44  | CropAndResize  | ROIPooling (if the the method is ‘bilinear’)  | 
45  | ArgMax  | ArgMax  | 
46  | DepthToSpace  | Reshape + Permute + Reshape (works for CPU only because of 6D tensors)  | 
47  | ExtractImagePatches  | ReorgYolo  | 
48  | ResizeBilinear  | Interp  | 
49  | ResizeNearestNeighbor  | Resample  | 
50  | Unpack  | Split + Reshape (removes dimension being unpacked) if the number of parts is equal to size along given axis  | 
51  | AddN  | Several Eltwises  | 
52  | Concat  | Concat  | 
53  | Minimum  | Power(scale=-1) + Eltwise(operation = max) + Power(scale=-1)  | 
54  | Unsqueeze  | Reshape  | 
55  | RealDiv  | Power(power = -1) and Eltwise(operation = mul)  | 
56  | SquaredDifference  | Power(scale = -1) + Eltwise(operation = sum) + Power(power = 2)  | 
57  | Gather  | Gather  | 
58  | GatherV2  | Gather  | 
59  | ResourceGather  | Gather  | 
60  | Sqrt  | Power(power=0.5)  | 
61  | Square  | Power(power=2)  | 
62  | Pad  | Pad  | 
63  | PadV2  | Pad  | 
64  | MirrorPad  | Pad  | 
65  | ReverseSequence  | ReverseSequence  | 
66  | ZerosLike Constant  | propagation  | 
参考资料:
 1 Converting a TensorFlow* Model 
2 Supported Framework Layers
                










