0
点赞
收藏
分享

微信扫一扫

vtk Registration (二 ) vtkIterativeClosestPointTransform 点云数据配准最经典的方法是迭代最近点算法 ICP


   ICP

点云配准分为两步,先做粗配准,再做精配准:

  • 粗配准(Coarse Global Registeration):基于局部几何特征
  • 精配准(Fine Local Registeration):需要初始位姿(initial alignment)

  这里讲一下 VTK 的 ICP IterativeClosestPointTransform,可以用于精配准;

精配准见 ​​vtkLandmarkTransform​​

点云数据配准最经典的方法是迭代最近点算法(Iterative Closest Points,ICP)。ICP算法是一个迭代的过程,每次迭代中对于源数据点P找到目标点集Q中的最近点,然后给予最小二乘原理求解当前的变换矩阵T。通过不断迭代迭代直至收敛,即完成了点集的配准;

vtkSmartPointer<vtkDICOMImageReader>  QtMyShow::Read_VTK_DICOM_DIR(const char * path)
{
vtkSmartPointer<vtkDICOMImageReader> reader =
vtkSmartPointer<vtkDICOMImageReader>::New();

reader->SetDirectoryName(path);
reader->Update();

return reader;

}

vtkSmartPointer<vtkPolyData> QtMyShow::ReadDicom(const char * path)
{
vtkSmartPointer<vtkDICOMImageReader> reader =
Read_VTK_DICOM_DIR(path);


//抽取等值面为骨头的信息
vtkMarchingCubes *boneExtractor = vtkMarchingCubes::New();
boneExtractor->SetInputData(reader->GetOutput());
boneExtractor->SetValue(0, 85); //设置提取的等值信息
boneExtractor->Update();

剔除旧的或废除的数据单元,提高绘制速度
//vtkStripper *boneStripper = vtkStripper::New(); //三角带连接
//boneStripper->SetInputData(boneExtractor->GetOutput());
//boneStripper->Update();

vtkSmartPointer<vtkPolyData> data = vtkSmartPointer<vtkPolyData>::New();
data->DeepCopy(boneExtractor->GetOutput());
return data;
//return reader->GetOutput();
}

int main()
{
vtkSmartPointer<vtkVertexGlyphFilter> sourceGlyph =
vtkSmartPointer<vtkVertexGlyphFilter>::New();
//sourceGlyph->SetInputData(ReadDicom("E:/2"));
sourceGlyph->SetInputData(ReadDicom("E:/2"));
sourceGlyph->Update();

vtkSmartPointer<vtkTransform> trans =
vtkSmartPointer<vtkTransform>::New();
trans->Translate(0.2, 0.1, 0.1);
trans->RotateX(-30);

vtkSmartPointer<vtkTransformPolyDataFilter> transformFilter1 =
vtkSmartPointer<vtkTransformPolyDataFilter>::New();
transformFilter1->SetInputData(sourceGlyph->GetOutput());
transformFilter1->SetTransform(trans);
transformFilter1->Update();



target ->DeepCopy(sourceGlyph->GetOutput());
source->DeepCopy(transformFilter1->GetOutput());

vtkNew<vtkIterativeClosestPointTransform> icp;
icp->SetSource(source);
icp->SetTarget(target);
icp->GetLandmarkTransform()->SetModeToRigidBody();

icp->SetMaximumNumberOfIterations(50);
icp->StartByMatchingCentroidsOn();
icp->Modified();
icp->Update();


// Get the resulting transformation matrix (this matrix takes the source
// points to the target points)
vtkSmartPointer<vtkMatrix4x4> m = icp->GetMatrix();
std::cout << "The resulting matrix is: " << *m << std::endl;

// Transform the source points by the ICP solution
vtkNew<vtkTransformPolyDataFilter> icpTransformFilter;
icpTransformFilter->SetInputData(source);
icpTransformFilter->SetTransform(icp);
icpTransformFilter->Update();
}

我测试了一下,对于同源的数据可能效果不错,不过对于异源数据,多模数据,效果很差;

举报

相关推荐

0 条评论