Max Sum Plus Plus
 
Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
 Total Submission(s): 22076    Accepted Submission(s): 7405 
Problem Description
 
  Now I think you have got an AC in Ignatius.L's "Max Sum" problem. To be a brave ACMer, we always challenge ourselves to more difficult problems. Now you are faced with a more difficult problem. 
 
 Given a consecutive number sequence S 
 1, S 
 2, S 
 3, S 
 4 ... S 
 x, ... S 
 n (1 ≤ x ≤ n ≤ 1,000,000, -32768 ≤ S 
 x ≤ 32767). We define a function sum(i, j) = S 
 i + ... + S 
 j (1 ≤ i ≤ j ≤ n). 
 
 Now given an integer m (m > 0), your task is to find m pairs of i and j which make sum(i 
 1, j 
 1) + sum(i 
 2, j 
 2) + sum(i 
 3, j 
 3) + ... + sum(i 
 m, j 
 m) maximal (i 
 x ≤ i 
 y ≤ j 
 x or i 
 x ≤ j 
 y ≤ j 
 x is not allowed). 
 
 But I`m lazy, I don't want to write a special-judge module, so you don't have to output m pairs of i and j, just output the maximal summation of sum(i 
 x, j 
 x)(1 ≤ x ≤ m) instead. ^_^ 
 
 
 
Input
 
  Each test case will begin with two integers m and n, followed by n integers S 
 1, S 
 2, S 
 3 ... S 
 n. 
 
 Process to the end of file. 
 
 
 
Output
 
Output the maximal summation described above in one line.
 
 
Sample Input
 
1 3 1 2 3 2 6 -1 4 -2 3 -2 3
 
 
Sample Output
 
Hint
   
   
//题意:
   
   
给你一个m,n,然后给你n个数,表示让你从n个数中找出m个连续的数组使得他们的和最大。
   
   
#include<stdio.h>
#include<string.h>
#include<math.h>
#include<algorithm>
#define INF 0x80000000
using namespace std;
int a[1000010];
int b[1000010];
int dp[1000010];
int main()
{
	int n,m,i,j,k;
	int mm;
	while(scanf("%d%d",&m,&n)!=EOF)
	{
		for(i=1;i<=n;i++)
			scanf("%d",&a[i]);
		for(i=0;i<=n;i++)
		{
			dp[i]=0;
			b[i]=0;
		}
		for(i=1;i<=m;i++)
		{
			mm=INF;
			for(j=i;j<=n;j++)
			{
				if(dp[j-1]>b[j-1])
					dp[j]=dp[j-1]+a[j];
				else
					dp[j]=b[j-1]+a[j];
				b[j-1]=mm;
				if(mm<dp[j])
					mm=dp[j];
			}
			b[j-1]=mm;
		}
		printf("%d\n",mm);
	}
	return 0;
}    
    










