0
点赞
收藏
分享

微信扫一扫

C++PTAA1086前中序确定树+后遍

艾米吖 2022-01-27 阅读 23
c++

An inorder binary tree traversal can be implemented in a non-recursive way with a stack. For example, suppose that when a 6-node binary tree (with the keys numbered from 1 to 6) is traversed, the stack operations are: push(1); push(2); push(3); pop(); pop(); push(4); pop(); pop(); push(5); push(6); pop(); pop(). Then a unique binary tree (shown in Figure 1) can be generated from this sequence of operations. Your task is to give the postorder traversal sequence of this tree.

Figure 1
Input Specification:
Each input file contains one test case. For each case, the first line contains a positive integer N (≤30) which is the total number of nodes in a tree (and hence the nodes are numbered from 1 to N). Then 2N lines follow, each describes a stack operation in the format: “Push X” where X is the index of the node being pushed onto the stack; or “Pop” meaning to pop one node from the stack.

Output Specification:
For each test case, print the postorder traversal sequence of the corresponding tree in one line. A solution is guaranteed to exist. All the numbers must be separated by exactly one space, and there must be no extra space at the end of the line.

6
Push 1
Push 2
Push 3
Pop
Pop
Push 4
Pop
Pop
Push 5
Push 6
Pop
Pop

Sample Output:

3 4 2 6 5 1

核心思路

这部分的核心思路是push是先序遍历,pop是中序遍历,已知先序中序确定一棵树,然后后序在遍历树,如果不这样考虑,那就要从题目中本身出发,比如push代表它是根节点。

完整源码

#include<cstdio>
#include<cstring>
#include<stack>
#include<algorithm>
using namespace std;
const int maxn = 50;
struct node {
    int data;
    node *lchild;
    node *rchild;

};
int pre[maxn],in[maxn],post[maxn]; //先序,中序,后序
int n ;//结点个数

//当前二叉树的先序序列为[preL,preR],中序序列为[inL,inR]
//create函数返回构建出的二叉树的根节点地址
node *create(int preL, int preR, int inL,int inR){
    if(preL > preR){
        return NULL;// 若先序序列长度小于等于0,则直接返回
    }
    node * root = new node;//新建一个新的结点,用来存放当前二叉树的根节点
    root->data = pre[preL];//新结点的数据域为根节点的值
    int k;
    for(k = inL;k<=inR;k++){
        if(in[k] == pre[preL]) break;
    }
    int numLeft = k - inL;//左子树的结点个数
    //返回左子树的根节点地址,赋值给root的左指针
    root->lchild = create(preL+1,preL+numLeft,inL,k-1);
    root->rchild = create(preL+numLeft+1,preR,k+1,inR);
    return root;//返回根节点的地址
}

int num = 0;//已经输出的结点个数
void postorder(node *root){
    //后续遍历
    if(root == NULL){
        return ;
    }
    postorder(root->lchild);
    postorder(root->rchild);
    printf("%d",root->data);
    num++;
    if(num<n) printf(" ");
}
int main()
{
    scanf("%d",&n);
    char str[5];
    stack<int>st;
    int x,preIndex = 0,inIndex = 0;//入栈元素,先序序列位置及中序序列位置
    for(int i =0;i<2*n;i++){//出栈入栈共2n次
        scanf("%s",str);
        if(strcmp(str,"Push") == 0){//入栈
            scanf("%d",&x);
            pre[preIndex++] = x; //令pre[preIndex] = x
            st.push(x);
        }else{
            in[inIndex++] = st.top();// 令in[inIndex] = st.top
            st.pop();
        }

    }
    node *root = create(0,n-1,0,n-1);//建树
    postorder(root);

    return 0;

}

方法2,非栈模拟

//每到一棵树,第一个操作为push
//每当push ,必考察有没有左子树,看是不是push
//每当pop,考察有没有右子树,看是不是push
#include<iostream>
#include<vector>
using namespace std;
struct node{
    int key;
    node *left,*right;
};
vector<int>v;
void makenode(node *&root){
    string s;
    int i;
    cin >> i;
    root = new node;
    root->key = i;
    cin >> s;
    if(s=="Push"){
        makenode(root->left);
    }else root->left = NULL;
    s ="";
    cin >> s;
    if(s=="Push"){
        makenode(root->right);
    }else root->right = NULL;
}
void postordertraverse(node*root){
    if(root==NULL) return;
    postordertraverse(root->left);
    postordertraverse(root->right);
    v.emplace_back(root->key);
}
int main()
{
    int i,j,k;
    cin >> i;
    node* tree = NULL;
    string s;
    cin>>s;
    makenode(tree);
    postordertraverse(tree);
    for(i=0;i<v.size();i++){
        if(i) cout << " ";
        cout << v[i];

    }

    return 0;

}
举报

相关推荐

0 条评论