0
点赞
收藏
分享

微信扫一扫

OpenVINO之六:转换MXNet模型


1

2 OpenVINO支持的MXNet模型

2-1 Classification models:

  • VGG-16 VGG-19
  • ResNet-152 v1
  • SqueezeNet_v1.1
  • Inception BN
  • CaffeNet
  • DenseNet-121 DenseNet-161 DenseNet-169 DenseNet-201
  • MobileNet

2-2 Object detection models:

  • SSD-ResNet-50
  • SSD-VGG-16-300
  • SSD-Inception v3

2-3 Semantic Segmentation models:

  • FCN8

2-4 Face Detection models:

  • MTCNN P-Net MTCNN N-Net MTCNN O-Net MTCNN R-Net

Lightened_moon
RNN-Transducer Repo
word_lm Repo

3 OpenVINO支持的MXNet层与其在Intermediate Representation (IR)中的对应关系

NUMBER

SYMBOL NAME IN MXNET*

LAYER NAME IN THE INTERMEDIATE REPRESENTATION

1

BatchNorm

BatchNormalization

2

Crop

Crop

3

ScaleShift

ScaleShift

4

Pooling

Pooling

5

SoftmaxOutput

SoftMax

6

SoftmaxActivation

SoftMax

7

null

Ignored, does not appear in IR

8

Convolution

Convolution

9

Deconvolution

Deconvolution

10

Activation(act_type = relu)

ReLU

11

ReLU

ReLU

12

LeakyReLU

ReLU (negative_slope = 0.25)

13

Concat

Concat

14

elemwise_add

Eltwise(operation = sum)

15

_Plus

Eltwise(operation = sum)

16

Flatten

Flatten

17

Reshape

Reshape

18

FullyConnected

FullyConnected

19

UpSampling

Resample

20

transpose

Permute

21

LRN

Norm

22

L2Normalization

Normalize

23

Dropout

Ignored, does not appear in IR

24

_copy

Ignored, does not appear in IR

25

_contrib_MultiBoxPrior

PriorBox

26

_contrib_MultiBoxDetection

DetectionOutput

27

broadcast_mul

ScaleShift

28

sigmoid

sigmoid

29

Activation (act_type = tanh)

Activation (operation = tanh)

30

LeakyReLU (act_type = prelu)

PReLU

31

LeakyReLU (act_type = elu)

Activation (operation = elu)

32

elemwise_mul

Eltwise (operation = mul)

33

add_n

Eltwise (operation = sum)

34

ElementWiseSum

Eltwise (operation = sum)

35

_mul_scalar

Power

36

broadcast_add

Eltwise (operation = sum)

37

slice_axis

Crop

38

Custom

Custom Layers in the Model Optimizer

39

_minus_scalar

Power

40

Pad

Pad

41

_contrib_Proposal

Proposal

42

ROIPooling

ROIPooling

43

stack

Concat

44

swapaxis

Permute

45

zeros

Const

45

rnn

TensorIterator

46

rnn_param_concat

Concat

47

slice_channel

Split

48

_maximum

Eltwise(operation = max)

49

_minimum

Power(scale=-1) + Eltwise(operation = max) + Power(scale=-1)

50

InstanceNorm

scale * (x - mean) / sqrt(variance + epsilon) + B

51

Embedding

Gather

参考资料:
1 ​​​Converting a MXNet* Model​​​

2 ​​Supported Framework Layers​​


举报

相关推荐

0 条评论