N-Queens
The n-queens puzzle is the problem of placing n queens on an n×n
Given an integer n, return all distinct solutions to the n-queens puzzle.
Each solution contains a distinct board configuration of the n-queens' placement, where 'Q'
and '.'
For example,
There exist two distinct solutions to the 4-queens puzzle:
[ [".Q..", // Solution 1 "...Q", "Q...", "..Q."], ["..Q.", // Solution 2 "Q...", "...Q", ".Q.."] ]
Hide Tags
Backtracking
class Solution {
public:
vector<vector<string> > res;
vector<vector<string>> solveNQueens(int n) {
int *a=new int[n];
memset(a,0,sizeof(int)*n);
solve(a,n,0);
return res;
}
void solve(int *a, int n,int index)
{
for(int i=0;i<n;i++)//对每个index 寻找第i列放皇后
{
if(isValid(a,n,index,i))//index i 行 列
{
a[index]=i;
if(index==n-1)
{
print(a,n);
a[index]=0;
return ;
}
solve(a,n,index+1);
a[index]=0;
}
}
}
void print(int *a, int n)
{
vector<string> path;
for(int i=0;i<n;i++)
{
string s(n,'.');
s[a[i]]='Q';
path.push_back(s);
}
res.push_back(path);
}
bool isValid(int *a,int n,int x,int y)
{
int col;
for(int i=0;i<x;i++)//行
{
col=a[i];//第i行,皇后在第col列
if(y==col) //同列
return false;
if((col-y)==(i-x))// 对角线'\'
return false;
if((col-y)==(x-i))// 对角线'/'
return false;
}
return true;
}
};