0
点赞
收藏
分享

微信扫一扫

力扣:63. 不同路径 II

腾讯优测 2022-03-30 阅读 69

题目描述

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。
机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish”)。
现在考虑网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径?
网格中的障碍物和空位置分别用 1 和 0 来表示。
在这里插入图片描述

问题分析

动态规划:

  • 确定dp数组以及下标的含义:dp[i][j]:表示从(0,0)出发,到达(i,j)有dp[i][j]条不同路径
  • 确定递推公式:递推公式和力扣:62.不同路径一样,dp[i][j]=dp[i-1][j]+dp[i][j-1],不过要注意,如果(i,j)就是障碍物,则应该保持初始状态(初始状态为0)
  • 初始化dp数组:从(0,0)到(i,0)的路径只有一条,所以dp[i][0]一定都是1,dp[0][j]同理。如果(i,0)这一条路径上有了障碍物,那么障碍物之后(包括障碍物)位置都是不能到达的,所以障碍物之后的dp[i][0]应该还是初始值0,同理(0,j)路径上也一样。

代码实现

// 编程软件:VS2019
// 参考书籍:代码随想录
#include<iostream>
#include<vector>
using namespace std;

//动态规划
int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
	int m = obstacleGrid.size();
	int n = obstacleGrid[0].size();
	vector<vector<int>> dp(m, vector<int>(n, 0));
	for (int i = 0; i < m && obstacleGrid[i][0] == 0; i++) dp[i][0] = 1; // (i,0)路径
	for (int j = 0; j < n && obstacleGrid[0][j] == 0; j++) dp[0][j] = 1; // (0,j)路径
	for (int i = 1; i < m; i++) {
		for (int j = 1; j < n; j++) {
			if (obstacleGrid[i][j] == 1) continue; // 障碍物
			dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
		}
	}
	return dp[m - 1][n - 1];
}

int main() {
	vector<vector<int>> obstacleGrid = { {0, 0, 0},{0, 1, 0},{0, 0, 0} };
	cout<< uniquePathsWithObstacles(obstacleGrid);
}
// 结果:2
举报

相关推荐

0 条评论