Sum
 
Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
 Total Submission(s): 20    Accepted Submission(s): 13 
Problem Description
A1,A2....An,you can select a interval [l,r] or not,all the numbers Ai(l≤i≤r) will become f(Ai). f(x)=(1890x+143)mod10007.After that,the sum of n numbers should be as much as possible.What is the maximum sum?
 
 
Input
 
  There are multiple test cases. 
 
 First line of each case contains a single integer n. 
  
 (1≤n≤105) 
 
 Next line contains n integers 
  
 A1,A2....An. 
  
 (0≤Ai≤104) 
 
 It's guaranteed that 
  
 ∑n≤106. 
 
 
 
Output
 
For each test case,output the answer in a line.
 
 
Sample Input
 
2 10000 9999 5 1 9999 1 9999 1
 
 
Sample Output
 
19999
22033
//中文题意:
  
  
Sum
   
   
   
   
问题描述
    
    
给n个数A1,A2....An{A}_{1},{A}_{2}....{A}_{n}A1,A2....An,你可以选择一个区间(也可以不选),区间里每个数x变成f(x),其中f(x)=(1890x+143)mod10007f(x)=(1890x+143) mod 10007f(x)=(1890x+143)mod10007。问最后n个数之和最大可能为多少。    
    
输入描述
    
    
输入有多组数据。
每组数据第一行包含一个整数n.(1≤n≤105)(1\leq n\leq {10}^{5})(1≤n≤105)
第二行n个整数A1,A2....An{A}_{1},{A}_{2}....{A}_{n}A1,A2....An.(0≤Ai≤104)(0\leq {A}_{i}\leq {10}^{4})(0≤Ai≤104)
数据保证 ∑n≤106\sum n\leq {10}^{6}∑n≤106.    
    
输出描述
    
    
对于每组数据输出一行答案.    
    
输入样例
    
    
2
10000 9999
5
1 9999 1 9999 1    
    
输出样例
    
    
19999
22033  
  
//虽然是中文题,但比赛时就是读不懂什么意思,还以为是拓展GCD呐,赛后看了大神的代码才真正明白题的意思。
  
  
题意就是给你n个数,你可以从这n个数里面选一个区间,(也可以不选),如果选了,那么这一区间里的数x会通过公式变成f(x),如果不选,那么x还是x(不变)。最后将这n个数求和,要求他们的和最大。。。
  
  
#include<stdio.h>
#include<string.h>
#define N 100010
int a[N];
int main()
{
	int n,i,j,k;
	while(scanf("%d",&n)!=EOF)
	{
		int m=0;
		for(i=1;i<=n;i++)
		{
			scanf("%d",&a[i]);
			m+=a[i];
		}
		int ans=0,sum=0,mm=0;
		for(i=1;i<=n;i++)
		{
			ans+=a[i];
			sum=sum+(a[i]*1890+143)%10007;
			if(sum-ans>mm)
				mm=sum-ans;
			else if(sum-ans<0)
			{
				sum=0;
				ans=0;
			}
		}
		printf("%d\n",m+mm);
	}
	return 0;
}   
   










