Subsets
https://leetcode.com/problems/subsets/
思路1
 这里其实就是把Combination拿到题目的思路2,收集那种组合树所有root到其余节点(不包括root本身)path。
class Solution:
    # @param S, a list of integer
    # @return a list of lists of integer
    def subsets(self, S):
        def dfs(depth, start, valuelist):
            res.append(valuelist)#回溯的时候 每一层都要记录为结果就行
            if depth == len(S): return
            for i in range(start, len(S)):
                dfs(depth+1, i+1, valuelist+[S[i]])#这里注意是使用的+一个list,即valuelist并没有被传入递归函数中,所以当这个函数返回之后,valuelist并没有变。例如,递归完左子树返回之后,valuelist依然还是递归左子树之前的值。这里传入的是合并的list,属于一个新list
                #所以这里其实是用python语言的特点,使得在模板中提到的改变变量->递归所有子节点->恢复变量的过程简化了
        S.sort()
        res = []
        dfs(0, 0, [])
        return res思路2
类似与combination. 利用backtracking的模板
class Solution(object):
    def dfs(self, m, nums, subres, res):
        if m >= len(nums):
            tmp = [nums[i] for i,c in enumerate(subres) if c == 1]
            tmp.sort()
            res.append(tmp)
            return
        else:
            subres[m] = 0
            self.dfs(m+1, nums, subres, res)
            subres[m] = 1
            self.dfs(m+1, nums, subres, res)
    def subsets(self, nums):
        """
        :type nums: List[int]
        :rtype: List[List[int]]
        """
        subres = [0]*len(nums)
        res = []
        self.dfs(0, nums, subres, res)
        return res思路2
还可以用bitmap的办法做 
http://algorithm.yuanbin.me/zh-cn/exhaustive_search/subsets.html
自己重写code
class Solution(object):
    def dfs(self, candidates, start, end, subres, res):
        res.append(subres)
        for i in xrange(start, end):
            self.dfs(candidates, i + 1, end, subres + [candidates[i]], res)
    def subsets(self, nums):
        """
        :type nums: List[int]
        :rtype: List[List[int]]
        """
        nums.sort()
        res = []
        self.dfs(nums, 0, len(nums), [], res)
        return resSubsets II
https://leetcode.com/problems/subsets-ii/
思路1
class Solution:
    # @param num, a list of integer
    # @return a list of lists of integer
    def subsetsWithDup(self, S):
        def dfs(depth, start, valuelist):
            if valuelist not in res: res.append(valuelist)
            if depth == len(S): return
            for i in range(start, len(S)):
                dfs(depth+1, i+1, valuelist+[S[i]])
        S.sort()
        res = []
        dfs(0, 0, [])
        return res思路2
加上一个判断重复的条件即可
class Solution(object):
    def dfs(self, m, nums, subres, res):
        if m >= len(nums):
            tmp = [nums[i] for i,c in enumerate(subres) if c == 1]
            tmp.sort()
            if tmp not in res:#加上这个条件即可
                res.append(tmp)
            return
        else:
            subres[m] = 0
            self.dfs(m+1, nums, subres, res)
            subres[m] = 1
            self.dfs(m+1, nums, subres, res)
    def subsetsWithDup(self, nums):
        """
        :type nums: List[int]
        :rtype: List[List[int]]
        """
        subres = [0]*len(nums)
        res = []
        self.dfs(0, nums, subres, res)
        return res自己重写code
class Solution(object):
    def dfs(self, candidates, start, end, subres, res):
        if subres not in res: res.append(subres)
        for i in xrange(start, end):
            self.dfs(candidates, i + 1, end, subres + [candidates[i]], res)
    def subsetsWithDup(self, nums):
        """
        :type nums: List[int]
        :rtype: List[List[int]]
        """
        nums.sort()
        res = []
        self.dfs(nums, 0, len(nums), [], res)
        return res                









